訊號與系統 – 拉普拉斯變換的線性性質


拉普拉斯變換

拉普拉斯變換是一種數學工具,用於將時域中的微分方程轉換為頻域或s域中的代數方程。

數學上,如果$\mathit{x}\mathrm{(\mathit{t})}$是時域函式,則其拉普拉斯變換定義為:

$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{-\infty}^{\infty}\mathit{x}\mathrm{(\mathit{t})\mathit{e^{-st}}}\mathit{dt}\:\:\:..(1)$$

公式(1)給出了函式$\mathit{x}\mathrm{(\mathit{t})}$的雙邊拉普拉斯變換。但對於因果訊號,則應用單邊拉普拉斯變換,其定義為:

$$\mathit{L}\mathrm{[\mathit{x}\mathrm{(\mathit{t})}]}\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{\mathrm{0}}^{\infty}\mathit{x}\mathrm{(\mathit{t})\mathit{e^{-st}}}\mathit{dt}\:\:\:..(2)$$

拉普拉斯變換的線性性質

敘述 − 拉普拉斯變換的線性性質指出,兩個訊號的加權和的拉普拉斯變換等於各個訊號拉普拉斯變換的加權和。因此,如果

$$\mathit{x}_{\mathrm{1}}\mathrm{(\mathit{t})}\:\overset{LT}\longleftrightarrow\:\mathit{X}_{\mathrm{1}}\mathrm{(\mathit{s})}\:\:and \:\:\mathit{x}_{\mathrm{2}}\mathrm{(\mathit{t})}\:\overset{LT}\longleftrightarrow\:\mathit{X}_{\mathrm{2}}\mathrm{(\mathit{s})}$$

那麼,根據拉普拉斯變換的線性性質,

$$\mathit{ax}_{\mathrm{1}}\mathrm{(\mathit{t})}+\mathit{bx}_{\mathrm{2}}\mathrm{(\mathit{t})}\:\overset{LT}\longleftrightarrow\:\mathit{aX}_{\mathrm{1}}\mathrm{(\mathit{s})}+\mathit{bX}_{\mathrm{2}}\mathrm{(\mathit{s})}$$

證明

根據拉普拉斯變換的定義,我們有:

$$\mathit{L}[\mathit{x}\mathrm{(\mathit{t})}]\:\mathrm{=}\:\mathit{X}\mathrm{(\mathit{s})}\:\mathrm{=}\:\int_{-\infty}^{\infty}\mathit{x}\mathrm{(\mathit{t})\mathit{e}}^{\mathit{-st}}\:\mathit{dt}$$ $$\Rightarrow\mathit{L}[\mathit{ax}_\mathrm{1}\mathrm{(\mathit{}t)}+\mathit{bx}_\mathrm{2}\mathrm{(\mathit{t})}]\:\mathrm{=}\:\int_{0}^{\infty}[\mathit{ax}_\mathrm{1}\mathrm{(t)}+\mathit{bx}_\mathrm{2}\mathrm{(\mathit{t})}]\mathit{e^{-st}}\mathit{dt}$$ $$\Rightarrow\mathit{L}[\mathit{ax}_\mathrm{1}\mathrm{(\mathit{}t)}+\mathit{bx}_\mathrm{2}\mathrm{(\mathit{t})}]\:\mathrm{=}\:\mathit{a}\int_{0}^{\infty}\mathit{x}_\mathrm{1}\mathrm{(t)}\mathit{e^{-st}}\mathit{dt}+\mathit{b}\int_{0}^{\infty}\mathit{x}_\mathrm{2}\mathrm{(\mathit{t})}\mathit{e^{-st}}\mathit{dt}$$ $$\therefore\mathit{L}[\mathit{ax}_\mathrm{1}\mathrm{(\mathit{t})}+\mathit{bx}_\mathrm{2}\mathrm{(\mathit{t})}]\:\mathrm{=}\:\mathit{aX}_\mathrm{1}\mathrm{(\mathit{s})}+\mathit{bX}_\mathrm{2}\mathrm{(\mathit{s})}$$

或者也可以表示為:

$$\mathit{ax}_\mathrm{1}\mathrm{(\mathit{t})}+\mathit{bx}_\mathrm{2}\mathrm{(\mathit{t})}\:\overset{Lt}\longleftrightarrow\mathit{aX}_\mathrm{1}\mathrm{(\mathit{s})}+\mathit{bX}_\mathrm{2}\mathrm{(\mathit{s})}$$

數值例子

利用線性性質,確定由下式給出的函式的拉普拉斯變換:

$$\mathit{x}\mathrm{(\mathit{t})}\:\mathrm{=}\:\mathrm{2}\mathit{e^{-\mathrm{5}\mathit{t}}}\mathit{u}\mathrm{(\mathit{t})}\:-\:\mathrm{15}\mathit{e^{\mathrm{4}\mathit{t}}}\mathit{u}\mathrm{(\mathit{-t})}$$

解答

給定的訊號是:

$$\mathit{x}\mathrm{(\mathit{t})}\:\mathrm{=}\:\mathrm{2}\mathit{e^{-\mathrm{5}\mathit{t}}}\mathit{u}\mathrm{(\mathit{t})}\:-\:\mathrm{15}\mathit{e^{\mathrm{4}\mathit{t}}}\mathit{u}\mathrm{(\mathit{-t})}$$

令:

$$\mathit{x}\mathrm{(\mathit{t})}\:\mathrm{=}\:\mathit{x}_\mathrm{1}\mathrm{(\mathit{t})}+\mathit{x}_\mathrm{2}\mathrm{(\mathit{t})}$$ $$\therefore\mathit{x}_\mathrm{1}\mathrm{(\mathit{t})}\:\mathrm{=}\:\mathrm{2}\mathit{e^{-\mathrm{5}\mathit{t}}}\mathit{u}\mathrm{(\mathit{t})}\:\:and\:\:\mathit{x}_\mathrm{2}\mathrm{(\mathit{t})}\:\mathrm{=}\:-\:\mathrm{15}\mathit{e^{\mathrm{4}\mathit{t}}}\mathit{u}\mathrm{(\mathit{-t})}$$

現在,根據拉普拉斯變換的定義,我們得到:

$$\mathit{L}[\mathit{x}_{\mathrm{1}}\mathrm{(\mathit{t})}]\:\mathrm{=}\:\mathit{L}[\mathrm{2}\mathit{e^{-\mathrm{5}\mathit{t}}}\mathit{u}\mathrm{(\mathit{t})}]\:\mathrm{=}\:\mathrm{2}\mathit{L}[\mathit{e^{-\mathrm{5}\mathit{t}}}\mathit{u}\mathrm{(\mathit{t})}]$$ $$\Rightarrow\mathit{L}[\mathit{x}_{\mathrm{1}}\mathrm{(\mathit{t})}]\:\mathrm{=}\:\frac{\mathrm{2}}{\mathrm{(\mathit{s}+\mathrm{5})}};\:ROC\rightarrow\:Re\mathrm{(\mathit{s})}>-5$$

同樣地,

$$\mathit{L}[\mathit{x}_{\mathrm{2}}\mathrm{(\mathit{t})}]\:\mathrm{=}\:\mathit{L}[-\:\mathrm{15}\mathit{e^{\mathrm{4}\mathit{t}}}\mathit{u}\mathrm{(\mathit{-t})}]\:\mathrm{=}\:-\mathrm{15}\mathit{L}[\mathit{e^{\mathrm{4}\mathit{t}}}\mathit{u}\mathrm{(\mathit{-t})}]\:\mathrm{=}\:\frac{\mathrm{(-15)}}{\mathrm{-(\mathit{s}-\mathrm{4})}}$$ $$\Rightarrow\mathit{L}[\mathit{x}_{\mathrm{2}}\mathrm{(\mathit{t})}]\:\mathrm{=}\:\frac{\mathrm{15}}{\mathrm{(\mathit{s}-\mathrm{4})}}\:;ROC\:\rightarrow\:Re\mathrm{(\mathit{s})}<\mathrm{4}$$

利用線性性質,我們得到:

$$\mathit{L}[\mathit{x}\mathrm{(\mathit{t})}]\:\mathrm{=}\:\mathit{L}[\mathit{x}_\mathrm{1}\mathrm{(\mathit{t})}]+\mathit{L}[\mathit{x}_\mathrm{2}\mathrm{(\mathit{t})}]\:\mathrm{=}\:\frac{\mathrm{2}}{\mathrm{(\mathit{s}+\mathrm{5})}}+\frac{\mathrm{15}}{\mathrm{(\mathit{s}-\mathrm{4})}}$$ $$\Rightarrow\mathit{L}[\mathit{x}\mathrm{(\mathit{t})}]\:\mathrm{=}\:\mathit{L}[\mathrm{2}\mathit{e^{-\mathrm{5}\mathit{t}}}\mathit{u}\mathrm{(\mathit{t})}-\:\mathrm{15}\mathit{e^{\mathrm{4}\mathit{t}}}\mathit{u}\mathrm{(\mathit{-t})}]\:\mathrm{=}\:\frac{\mathrm{17}\mathit{s}-\mathrm{83}}{\mathit{s}^{\mathrm{2}}+\mathit{s}-\mathrm{20}}$$ $$\therefore[\mathrm{2}\mathit{e^{-\mathrm{5}\mathit{t}}}\mathit{u}\mathrm{(\mathit{t})}-\:\mathrm{15}\mathit{e^{\mathrm{4}\mathit{t}}}\mathit{u}\mathrm{(\mathit{-t})}]\overset{LT}\longleftrightarrow\lgroup\frac{\mathrm{17}\mathit{s}-\mathrm{83}}{\mathit{s}^{\mathrm{2}}+\mathit{s}-\mathrm{20}}\rgroup;\:ROC\:\rightarrow\:\mathrm{-5}< Re\mathrm{(\mathit{s})}<\mathrm{4}$$

更新於:2022年1月7日

瀏覽量3K+

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.