單位脈衝、單位階躍和單位斜坡函式的Z變換


Z變換

Z變換 (ZT) 是一種數學工具,用於將時域中的差分方程轉換為z域中的代數方程。

數學上,如果$\mathrm{\mathit{x\left ( n \right )}}$ 是一個離散時間訊號或序列,那麼它的雙邊或雙側Z變換定義為 −

$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\,}X\left ( z \right )\mathrm{\, =\,}\sum_{n\mathrm{\, =\,}-\infty }^{\infty }x\left ( n \right )z^{-n}}}$$

其中,z 是一個復變數。

此外,單邊單側z變換定義為 −

$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\,}X\left ( z \right )\mathrm{\, =\,}\sum_{n\mathrm{\, =\,}\mathrm{0} }^{\infty }x\left ( n \right )z^{-n}}}$$

單位脈衝函式的Z變換

單位脈衝序列單位樣本序列定義為 −

$$\mathrm{\mathit{x\left ( n \right )\mathrm{\, =\,}\delta \left ( n \right )\mathrm{\, =\,}\begin{Bmatrix} \mathrm{1}& \mathrm{for}\: n\mathrm{\, =\,}\mathrm{0}\ \mathrm{0}& \mathrm{for}\: n
eq \mathrm{0}\ \end{Bmatrix} }}$$

因此,單位脈衝函式的Z變換由下式給出:

$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\,}X\left ( z \right )\mathrm{\, =\,}Z\left [ \delta \left ( n \right ) \right ]}}$$

$$\mathrm{\mathit{\Rightarrow X\left ( z \right )\mathrm{\, =\,}\sum_{n\mathrm{\, =\,}\mathrm{0}}^{\infty }\delta \left ( n \right )z^{-n}\mathrm{\, =\,}\mathrm{1};\; \; }ROC\rightarrow 所有 z,即整個 z 平面}$$

或者也可以表示為:

$$\mathrm{\mathit{\delta \left ( n \right )\overset{ZT}{\leftrightarrow}\mathrm{1;}\: \: }對於所有 z}$$

單位階躍函式的Z變換

單位階躍訊號單位階躍序列定義為 −

$$\mathrm{\mathit{x\left ( n \right )\mathrm{\, =\,}u \left ( n \right )\mathrm{\, =\,}\begin{Bmatrix} \mathrm{1}& \mathrm{for}\: n\geq \mathrm{0}\ \mathrm{0}& \mathrm{for}\: n< \mathrm{0}\ \end{Bmatrix} }}$$

因此,單位階躍函式的Z變換由下式給出:

$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\,}X\left ( z \right )\mathrm{\, =\,}Z\left [ u \left ( n \right ) \right ]}}$$

$$\mathrm{\mathit{\Rightarrow X\left ( z \right )\mathrm{\, =\,}\sum_{n\mathrm{\, =\,}\mathrm{0}}^{\infty }u \left ( n \right )z^{-n}}}$$

$$\mathrm{\mathit{\Rightarrow X\left ( z \right )\mathrm{\, =\,}\sum_{n\mathrm{\, =\,}\mathrm{0}}^{\infty }\left ( \mathrm{1} \right )\cdot z^{^{-n}}\mathrm{\, =\,}\mathrm{1}\mathrm{\, +\,}z^{\mathrm{-1}}\mathrm{\, +\,}z^{\mathrm{-2}}\mathrm{\, +\,}\cdot \cdot \cdot }}$$

$$\mathrm{\mathit{\Rightarrow X\left ( z \right )\mathrm{\, =\,}\frac{\mathrm{1}}{\left ( \mathrm{1}-z^{-\mathrm{1}} \right )}\mathrm{\, =\,}\frac{z}{z-\mathrm{1}}}}$$

上述求和或級數在|𝑧| > 1 時收斂。因此,單位階躍序列的Z變換的收斂域為|𝑧| > 1。因此,收斂域是z平面上單位圓的外部。

單位階躍序列的Z變換也可以表示為:

$$\mathrm{\mathit{u\left ( n \right )\overset{ZT}{\leftrightarrow}\left ( \frac{z}{z-\mathrm{1}} \right );\: \: }\; \; ROC\to \left|z \right|> 1}$$

單位斜坡序列的Z變換

單位斜坡序列定義為 −

$$\mathrm{\mathit{x\left ( n \right )\mathrm{\, =\,}r \left ( n \right )\mathrm{\, =\,}\begin{Bmatrix} n& \mathrm{for}\: n\geq \mathrm{0}\ \mathrm{0}& \mathrm{for}\: n< \mathrm{0}\ \end{Bmatrix} }}$$

因此,單位斜坡序列的Z變換由下式給出:

$$\mathrm{\mathit{Z\left [ x\left ( n \right ) \right ]\mathrm{\, =\,}X\left ( z \right )\mathrm{\, =\,}Z\left [ r \left ( n \right ) \right ]}}$$

$$\mathrm{\mathit{\Rightarrow X\left ( z \right )\mathrm{\, =\,}\sum_{n\mathrm{\, =\,}\mathrm{0}}^{\infty }r \left ( n \right )z^{-n}}}$$

$$\mathrm{\mathit{\Rightarrow X\left ( z \right )\mathrm{\, =\,}\sum_{n\mathrm{\, =\,}\mathrm{0}}^{\infty }n z^{^{-n}}\mathrm{\, =\,}\mathrm{0}\mathrm{\, +\,}z^{\mathrm{-1}}\mathrm{\, +\,}\mathrm{2}z^{\mathrm{-2}}\mathrm{\, +\,}\mathrm{3}z^{\mathrm{-3}}\mathrm{\, +\,}\mathrm{4}z^{\mathrm{-4}}\mathrm{\, +\,}\cdot \cdot \cdot }}$$

$$\mathrm{\mathit{\Rightarrow X\left ( z \right )\mathrm{\, =\,}z^{\mathrm{-1}}\left ( \mathrm{1}\mathrm{\, +\,}\mathrm{2}z^{\mathrm{-1}}\mathrm{\, +\,}\mathrm{3}z^{\mathrm{-2}}\mathrm{\, +\,}\mathrm{4}z^{\mathrm{-3}}\mathrm{\, +\,}\cdot \cdot \cdot \right ) }}$$

$$\mathrm{\mathit{\Rightarrow X\left ( z \right )\mathrm{\, =\,}z^{\mathrm{-1}}\left ( \mathrm{1}-z^{-\mathrm{1}} \right )^{-\mathrm{2}}}}$$

$$\mathrm{\mathit{\Rightarrow X\left ( z \right )\mathrm{\, =\,}\frac{z^{\mathrm{-1}}}{\left ( \mathrm{1}-z^{-\mathrm{1}} \right )^{\mathrm{2}}}\mathrm{\, =\,}\frac{z}{\left ( z-\mathrm{1} \right )^{\mathrm{2}}}}}$$

此級數在|𝑧−1| < 1 時收斂。因此,收斂域為|𝑧| > 1,即單位斜坡函式的Z變換的收斂域是z平面上單位圓的外部。

更新於: 2022年1月19日

22K+ 次檢視

開啟你的 職業生涯

透過完成課程獲得認證

開始學習
廣告

© . All rights reserved.