一個等腰三角形的頂角是$100^o$。求它的底角。


已知

一個等腰三角形的頂角是$100^o$。

要求

我們必須找到它的底角。

解答

設在$\triangle ABC$中,$AB = AC$且$\angle A = 100^o$

$AB = AC$   

這意味著,

$\angle C = \angle B$                 (等邊對等角)

$\angle A + \angle B + \angle C = 180^o$

$100^o + \angle B + \angle B = 180^o$             (因為 $\angle C = \angle B$)

$2\angle B = 180^o - 100^o = 80^o$

$\angle B= 40^o$

因此,

$\angle C = \angle B = 40^o$

因此,底角都等於$40^o$。

更新於: 2022年10月10日

391 次瀏覽

開啟您的職業生涯

透過完成課程獲得認證

開始學習
廣告