
- NumPy 教程
- NumPy - 首頁
- NumPy - 簡介
- NumPy - 環境配置
- NumPy 陣列
- NumPy - Ndarray 物件
- NumPy - 資料型別
- NumPy 陣列的建立和操作
- NumPy - 陣列建立例程
- NumPy - 陣列操作
- NumPy - 從現有資料建立陣列
- NumPy - 從數值範圍建立陣列
- NumPy - 陣列迭代
- NumPy - 陣列重塑
- NumPy - 陣列連線
- NumPy - 陣列堆疊
- NumPy - 陣列分割
- NumPy - 陣列扁平化
- NumPy - 陣列轉置
- NumPy 索引和切片
- NumPy - 索引和切片
- NumPy - 高階索引
- NumPy 陣列屬性和運算
- NumPy - 陣列屬性
- NumPy - 陣列形狀
- NumPy - 陣列大小
- NumPy - 陣列步幅
- NumPy - 陣列元素大小
- NumPy - 廣播
- NumPy - 算術運算
- NumPy - 陣列加法
- NumPy - 陣列減法
- NumPy - 陣列乘法
- NumPy - 陣列除法
- NumPy 高階陣列運算
- NumPy - 交換陣列軸
- NumPy - 位元組交換
- NumPy - 複製和檢視
- NumPy - 元素級的陣列比較
- NumPy - 陣列過濾
- NumPy - 陣列連線
- NumPy - 排序、搜尋和計數函式
- NumPy - 陣列搜尋
- NumPy - 陣列的並集
- NumPy - 查詢唯一行
- NumPy - 建立日期時間陣列
- NumPy - 二元運算子
- NumPy - 字串函式
- NumPy - 數學函式
- NumPy - 統計函式
- NumPy - 矩陣庫
- NumPy - 線性代數
- NumPy - Matplotlib
- NumPy - 使用 Matplotlib 繪製直方圖
- NumPy - NumPy 的 I/O 操作
- NumPy 排序和高階操作
- NumPy - 陣列排序
- NumPy - 沿軸排序
- NumPy - 使用花式索引排序
- NumPy - 結構化陣列
- NumPy - 建立結構化陣列
- NumPy - 操作結構化陣列
- NumPy - 欄位訪問
- NumPy - 記錄陣列
- Numpy - 載入陣列
- Numpy - 儲存陣列
- NumPy - 向陣列追加值
- NumPy - 交換陣列列
- NumPy - 向陣列插入軸
- NumPy 處理缺失資料
- NumPy - 處理缺失資料
- NumPy - 識別缺失值
- NumPy - 刪除缺失資料
- NumPy - 估算缺失資料
- NumPy 效能最佳化
- NumPy - 使用陣列進行效能最佳化
- NumPy - 使用陣列進行向量化
- NumPy - 陣列的記憶體佈局
- Numpy 線性代數
- NumPy - 線性代數
- NumPy - 矩陣庫
- NumPy - 矩陣加法
- NumPy - 矩陣減法
- NumPy - 矩陣乘法
- NumPy - 元素級的矩陣運算
- NumPy - 點積
- NumPy - 矩陣求逆
- NumPy - 行列式計算
- NumPy - 特徵值
- NumPy - 特徵向量
- NumPy - 奇異值分解
- NumPy - 求解線性方程組
- NumPy - 矩陣範數
- NumPy 元素級的矩陣運算
- NumPy - 求和
- NumPy - 求平均值
- NumPy - 求中位數
- NumPy - 求最小值
- NumPy - 求最大值
- NumPy 集合運算
- NumPy - 唯一元素
- NumPy - 交集
- NumPy - 並集
- NumPy - 差集
- NumPy 有用資源
- NumPy 編譯器
- NumPy - 快速指南
- NumPy - 有用資源
- NumPy - 討論
numpy.linalg.inv()
我們使用numpy.linalg.inv()函式來計算矩陣的逆矩陣。逆矩陣是這樣一個矩陣,當它與原矩陣相乘時,結果是單位矩陣。
示例
import numpy as np x = np.array([[1,2],[3,4]]) y = np.linalg.inv(x) print x print y print np.dot(x,y)
它應該產生以下輸出:
[[1 2] [3 4]] [[-2. 1. ] [ 1.5 -0.5]] [[ 1.00000000e+00 1.11022302e-16] [ 0.00000000e+00 1.00000000e+00]]
示例
現在讓我們在示例中建立矩陣 A 的逆矩陣。
import numpy as np a = np.array([[1,1,1],[0,2,5],[2,5,-1]]) print 'Array a:” print a ainv = np.linalg.inv(a) print 'Inverse of a:' print ainv print 'Matrix B is:' b = np.array([[6],[-4],[27]]) print b print 'Compute A-1B:' x = np.linalg.solve(a,b) print x # this is the solution to linear equations x = 5, y = 3, z = -2
它將產生以下輸出:
Array a: [[ 1 1 1] [ 0 2 5] [ 2 5 -1]] Inverse of a: [[ 1.28571429 -0.28571429 -0.14285714] [-0.47619048 0.14285714 0.23809524] [ 0.19047619 0.14285714 -0.0952381 ]] Matrix B is: [[ 6] [-4] [27]] Compute A-1B: [[ 5.] [ 3.] [-2.]]
可以使用以下函式獲得相同的結果:
x = np.dot(ainv,b)
numpy_linear_algebra.htm
廣告