
- NumPy 教程
- NumPy - 首頁
- NumPy - 簡介
- NumPy - 環境
- NumPy 陣列
- NumPy - Ndarray 物件
- NumPy - 資料型別
- NumPy 建立和運算元組
- NumPy - 陣列建立例程
- NumPy - 陣列操作
- NumPy - 從現有資料建立陣列
- NumPy - 從數值範圍建立陣列
- NumPy - 遍歷陣列
- NumPy - 重塑陣列
- NumPy - 連線陣列
- NumPy - 堆疊陣列
- NumPy - 分割陣列
- NumPy - 展平陣列
- NumPy - 轉置陣列
- NumPy 索引和切片
- NumPy - 索引和切片
- NumPy - 高階索引
- NumPy 陣列屬性和操作
- NumPy - 陣列屬性
- NumPy - 陣列形狀
- NumPy - 陣列大小
- NumPy - 陣列步長
- NumPy - 陣列元素大小
- NumPy - 廣播
- NumPy - 算術運算
- NumPy - 陣列加法
- NumPy - 陣列減法
- NumPy - 陣列乘法
- NumPy - 陣列除法
- NumPy 高階陣列操作
- NumPy - 交換陣列的軸
- NumPy - 位元組交換
- NumPy - 複製和檢視
- NumPy - 元素級陣列比較
- NumPy - 過濾陣列
- NumPy - 連線陣列
- NumPy - 排序、搜尋和計數函式
- NumPy - 搜尋陣列
- NumPy - 陣列的並集
- NumPy - 查詢唯一行
- NumPy - 建立日期時間陣列
- NumPy - 二元運算子
- NumPy - 字串函式
- NumPy - 數學函式
- NumPy - 統計函式
- NumPy - 矩陣庫
- NumPy - 線性代數
- NumPy - Matplotlib
- NumPy - 使用 Matplotlib 繪製直方圖
- NumPy - NumPy 的 I/O
- NumPy 排序和高階操作
- NumPy - 排序陣列
- NumPy - 沿軸排序
- NumPy - 使用花式索引排序
- NumPy - 結構化陣列
- NumPy - 建立結構化陣列
- NumPy - 操作結構化陣列
- NumPy - 欄位訪問
- NumPy - 記錄陣列
- Numpy - 載入陣列
- Numpy - 儲存陣列
- NumPy - 向陣列追加值
- NumPy - 交換陣列的列
- NumPy - 向陣列插入軸
- NumPy 處理缺失資料
- NumPy - 處理缺失資料
- NumPy - 識別缺失值
- NumPy - 刪除缺失資料
- NumPy - 填充缺失資料
- NumPy 效能最佳化
- NumPy - 使用陣列進行效能最佳化
- NumPy - 使用陣列進行向量化
- NumPy - 陣列的記憶體佈局
- Numpy 線性代數
- NumPy - 線性代數
- NumPy - 矩陣庫
- NumPy - 矩陣加法
- NumPy - 矩陣減法
- NumPy - 矩陣乘法
- NumPy - 元素級矩陣運算
- NumPy - 點積
- NumPy - 矩陣求逆
- NumPy - 行列式計算
- NumPy - 特徵值
- NumPy - 特徵向量
- NumPy - 奇異值分解
- NumPy - 求解線性方程組
- NumPy - 矩陣範數
- NumPy 元素級矩陣運算
- NumPy - 求和
- NumPy - 平均值
- NumPy - 中位數
- NumPy - 最小值
- NumPy - 最大值
- NumPy 集合運算
- NumPy - 唯一元素
- NumPy - 交集
- NumPy - 並集
- NumPy - 差集
- NumPy 有用資源
- NumPy 編譯器
- NumPy - 快速指南
- NumPy - 有用資源
- NumPy - 討論
NumPy - 統計函式
NumPy 有許多有用的統計函式,用於從陣列中給定的元素中查詢最小值、最大值、百分位數、標準差和方差等。這些函式解釋如下:
numpy.amin() 和 numpy.amax()
這些函式返回給定陣列中沿指定軸的元素的最小值和最大值。
示例
import numpy as np a = np.array([[3,7,5],[8,4,3],[2,4,9]]) print 'Our array is:' print a print '\n' print 'Applying amin() function:' print np.amin(a,1) print '\n' print 'Applying amin() function again:' print np.amin(a,0) print '\n' print 'Applying amax() function:' print np.amax(a) print '\n' print 'Applying amax() function again:' print np.amax(a, axis = 0)
它將產生以下輸出:
Our array is: [[3 7 5] [8 4 3] [2 4 9]] Applying amin() function: [3 3 2] Applying amin() function again: [2 4 3] Applying amax() function: 9 Applying amax() function again: [8 7 9]
numpy.ptp()
numpy.ptp() 函式返回沿軸的值的範圍(最大值-最小值)。
import numpy as np a = np.array([[3,7,5],[8,4,3],[2,4,9]]) print 'Our array is:' print a print '\n' print 'Applying ptp() function:' print np.ptp(a) print '\n' print 'Applying ptp() function along axis 1:' print np.ptp(a, axis = 1) print '\n' print 'Applying ptp() function along axis 0:' print np.ptp(a, axis = 0)
它將產生以下輸出:
Our array is: [[3 7 5] [8 4 3] [2 4 9]] Applying ptp() function: 7 Applying ptp() function along axis 1: [4 5 7] Applying ptp() function along axis 0: [6 3 6]
numpy.percentile()
百分位數(或百分位數)是統計學中使用的一種度量,表示一組觀測值中低於給定百分比的觀測值的數值。numpy.percentile() 函式接受以下引數。
numpy.percentile(a, q, axis)
其中,
序號 | 引數和描述 |
---|---|
1 | a 輸入陣列 |
2 | q 要計算的百分位數必須介於 0-100 之間 |
3 | axis 要計算百分位數的軸 |
示例
import numpy as np a = np.array([[30,40,70],[80,20,10],[50,90,60]]) print 'Our array is:' print a print '\n' print 'Applying percentile() function:' print np.percentile(a,50) print '\n' print 'Applying percentile() function along axis 1:' print np.percentile(a,50, axis = 1) print '\n' print 'Applying percentile() function along axis 0:' print np.percentile(a,50, axis = 0)
它將產生以下輸出:
Our array is: [[30 40 70] [80 20 10] [50 90 60]] Applying percentile() function: 50.0 Applying percentile() function along axis 1: [ 40. 20. 60.] Applying percentile() function along axis 0: [ 50. 40. 60.]
numpy.median()
中位數定義為將資料樣本的上半部分與下半部分分隔的值。numpy.median() 函式的使用方式如下面的程式所示。
示例
import numpy as np a = np.array([[30,65,70],[80,95,10],[50,90,60]]) print 'Our array is:' print a print '\n' print 'Applying median() function:' print np.median(a) print '\n' print 'Applying median() function along axis 0:' print np.median(a, axis = 0) print '\n' print 'Applying median() function along axis 1:' print np.median(a, axis = 1)
它將產生以下輸出:
Our array is: [[30 65 70] [80 95 10] [50 90 60]] Applying median() function: 65.0 Applying median() function along axis 0: [ 50. 90. 60.] Applying median() function along axis 1: [ 65. 80. 60.]
numpy.mean()
算術平均值是沿軸的元素之和除以元素的數量。numpy.mean() 函式返回陣列中元素的算術平均值。如果指定了軸,則沿該軸計算。
示例
import numpy as np a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print 'Our array is:' print a print '\n' print 'Applying mean() function:' print np.mean(a) print '\n' print 'Applying mean() function along axis 0:' print np.mean(a, axis = 0) print '\n' print 'Applying mean() function along axis 1:' print np.mean(a, axis = 1)
它將產生以下輸出:
Our array is: [[1 2 3] [3 4 5] [4 5 6]] Applying mean() function: 3.66666666667 Applying mean() function along axis 0: [ 2.66666667 3.66666667 4.66666667] Applying mean() function along axis 1: [ 2. 4. 5.]
numpy.average()
加權平均值是由每個分量乘以反映其重要性的因子得到的平均值。numpy.average() 函式根據另一個數組中給出的相應權重計算陣列中元素的加權平均值。該函式可以具有軸引數。如果未指定軸,則陣列將被展平。
考慮一個數組 [1,2,3,4] 和相應的權重 [4,3,2,1],加權平均值是透過將對應元素的乘積相加並將其和除以權重之和來計算的。
加權平均值 = (1*4+2*3+3*2+4*1)/(4+3+2+1)
示例
import numpy as np a = np.array([1,2,3,4]) print 'Our array is:' print a print '\n' print 'Applying average() function:' print np.average(a) print '\n' # this is same as mean when weight is not specified wts = np.array([4,3,2,1]) print 'Applying average() function again:' print np.average(a,weights = wts) print '\n' # Returns the sum of weights, if the returned parameter is set to True. print 'Sum of weights' print np.average([1,2,3, 4],weights = [4,3,2,1], returned = True)
它將產生以下輸出:
Our array is: [1 2 3 4] Applying average() function: 2.5 Applying average() function again: 2.0 Sum of weights (2.0, 10.0)
在多維陣列中,可以指定計算的軸。
示例
import numpy as np a = np.arange(6).reshape(3,2) print 'Our array is:' print a print '\n' print 'Modified array:' wt = np.array([3,5]) print np.average(a, axis = 1, weights = wt) print '\n' print 'Modified array:' print np.average(a, axis = 1, weights = wt, returned = True)
它將產生以下輸出:
Our array is: [[0 1] [2 3] [4 5]] Modified array: [ 0.625 2.625 4.625] Modified array: (array([ 0.625, 2.625, 4.625]), array([ 8., 8., 8.]))
標準差
標準差是平均值的平方偏差的平均值的平方根。標準差的公式如下:
std = sqrt(mean(abs(x - x.mean())**2))
如果陣列是 [1, 2, 3, 4],則其平均值為 2.5。因此,平方偏差為 [2.25, 0.25, 0.25, 2.25],其平均值的平方根除以 4,即 sqrt (5/4) 為 1.1180339887498949。
示例
import numpy as np print np.std([1,2,3,4])
它將產生以下輸出:
1.1180339887498949
方差
方差是平方偏差的平均值,即 mean(abs(x - x.mean())**2)。換句話說,標準差是方差的平方根。
示例
import numpy as np print np.var([1,2,3,4])
它將產生以下輸出:
1.25