
- NumPy 教程
- NumPy - 首頁
- NumPy - 簡介
- NumPy - 環境配置
- NumPy 陣列
- NumPy - Ndarray 物件
- NumPy - 資料型別
- NumPy 陣列的建立和操作
- NumPy - 陣列建立函式
- NumPy - 陣列操作
- NumPy - 從現有資料建立陣列
- NumPy - 從數值範圍建立陣列
- NumPy - 陣列迭代
- NumPy - 陣列重塑
- NumPy - 陣列拼接
- NumPy - 陣列堆疊
- NumPy - 陣列分割
- NumPy - 陣列扁平化
- NumPy - 陣列轉置
- NumPy 索引和切片
- NumPy - 索引和切片
- NumPy - 高階索引
- NumPy 陣列屬性和操作
- NumPy - 陣列屬性
- NumPy - 陣列形狀
- NumPy - 陣列大小
- NumPy - 陣列步長
- NumPy - 陣列元素大小
- NumPy - 廣播機制
- NumPy - 算術運算
- NumPy - 陣列加法
- NumPy - 陣列減法
- NumPy - 陣列乘法
- NumPy - 陣列除法
- NumPy 高階陣列操作
- NumPy - 交換陣列軸
- NumPy - 位元組交換
- NumPy - 副本和檢視
- NumPy - 元素級陣列比較
- NumPy - 陣列過濾
- NumPy - 陣列連線
- NumPy - 排序、搜尋和計數函式
- NumPy - 陣列搜尋
- NumPy - 陣列的並集
- NumPy - 查詢唯一行
- NumPy - 建立日期時間陣列
- NumPy - 二元運算子
- NumPy - 字串函式
- NumPy - 數學函式
- NumPy - 統計函式
- NumPy - 矩陣庫
- NumPy - 線性代數
- NumPy - Matplotlib
- NumPy - 使用 Matplotlib 繪製直方圖
- NumPy - NumPy 的 I/O 操作
- NumPy 排序和高階操作
- NumPy - 陣列排序
- NumPy - 沿軸排序
- NumPy - 使用花式索引排序
- NumPy - 結構化陣列
- NumPy - 建立結構化陣列
- NumPy - 操作結構化陣列
- NumPy - 欄位訪問
- NumPy - 記錄陣列
- Numpy - 載入陣列
- Numpy - 儲存陣列
- NumPy - 向陣列追加值
- NumPy - 交換陣列的列
- NumPy - 向陣列插入軸
- NumPy 處理缺失資料
- NumPy - 處理缺失資料
- NumPy - 識別缺失值
- NumPy - 刪除缺失資料
- NumPy - 缺失資料插補
- NumPy 效能最佳化
- NumPy - 使用陣列進行效能最佳化
- NumPy - 使用陣列進行向量化
- NumPy - 陣列的記憶體佈局
- Numpy 線性代數
- NumPy - 線性代數
- NumPy - 矩陣庫
- NumPy - 矩陣加法
- NumPy - 矩陣減法
- NumPy - 矩陣乘法
- NumPy - 元素級矩陣運算
- NumPy - 點積
- NumPy - 矩陣求逆
- NumPy - 行列式計算
- NumPy - 特徵值
- NumPy - 特徵向量
- NumPy - 奇異值分解
- NumPy - 求解線性方程組
- NumPy - 矩陣範數
- NumPy 元素級矩陣運算
- NumPy - 求和
- NumPy - 求平均值
- NumPy - 求中位數
- NumPy - 求最小值
- NumPy - 求最大值
- NumPy 集合運算
- NumPy - 唯一元素
- NumPy - 交集
- NumPy - 並集
- NumPy - 差集
- NumPy 有用資源
- NumPy 編譯器
- NumPy - 快速指南
- NumPy - 有用資源
- NumPy - 討論
NumPy - 數學函式
可以理解的是,NumPy 包含大量的各種數學運算。NumPy 提供標準三角函式、算術運算函式、複數處理函式等。
三角函式
NumPy 具有標準三角函式,這些函式返回給定角度(以弧度表示)的三角比。
示例
import numpy as np a = np.array([0,30,45,60,90]) print 'Sine of different angles:' # Convert to radians by multiplying with pi/180 print np.sin(a*np.pi/180) print '\n' print 'Cosine values for angles in array:' print np.cos(a*np.pi/180) print '\n' print 'Tangent values for given angles:' print np.tan(a*np.pi/180)
以下是其輸出:
Sine of different angles: [ 0. 0.5 0.70710678 0.8660254 1. ] Cosine values for angles in array: [ 1.00000000e+00 8.66025404e-01 7.07106781e-01 5.00000000e-01 6.12323400e-17] Tangent values for given angles: [ 0.00000000e+00 5.77350269e-01 1.00000000e+00 1.73205081e+00 1.63312394e+16]
arcsin、arcos 和 arctan 函式返回給定角度的 sin、cos 和 tan 的三角反函式。可以使用 numpy.degrees() 函式將弧度轉換為度數來驗證這些函式的結果。
示例
import numpy as np a = np.array([0,30,45,60,90]) print 'Array containing sine values:' sin = np.sin(a*np.pi/180) print sin print '\n' print 'Compute sine inverse of angles. Returned values are in radians.' inv = np.arcsin(sin) print inv print '\n' print 'Check result by converting to degrees:' print np.degrees(inv) print '\n' print 'arccos and arctan functions behave similarly:' cos = np.cos(a*np.pi/180) print cos print '\n' print 'Inverse of cos:' inv = np.arccos(cos) print inv print '\n' print 'In degrees:' print np.degrees(inv) print '\n' print 'Tan function:' tan = np.tan(a*np.pi/180) print tan print '\n' print 'Inverse of tan:' inv = np.arctan(tan) print inv print '\n' print 'In degrees:' print np.degrees(inv)
其輸出如下:
Array containing sine values: [ 0. 0.5 0.70710678 0.8660254 1. ] Compute sine inverse of angles. Returned values are in radians. [ 0. 0.52359878 0.78539816 1.04719755 1.57079633] Check result by converting to degrees: [ 0. 30. 45. 60. 90.] arccos and arctan functions behave similarly: [ 1.00000000e+00 8.66025404e-01 7.07106781e-01 5.00000000e-01 6.12323400e-17] Inverse of cos: [ 0. 0.52359878 0.78539816 1.04719755 1.57079633] In degrees: [ 0. 30. 45. 60. 90.] Tan function: [ 0.00000000e+00 5.77350269e-01 1.00000000e+00 1.73205081e+00 1.63312394e+16] Inverse of tan: [ 0. 0.52359878 0.78539816 1.04719755 1.57079633] In degrees: [ 0. 30. 45. 60. 90.]
舍入函式
numpy.around()
這是一個返回舍入到所需精度的值的函式。該函式採用以下引數。
numpy.around(a,decimals)
其中,
序號 | 引數和描述 |
---|---|
1 | a 輸入資料 |
2 | decimals 要舍入到的十進位制位數。預設為 0。如果為負數,則整數將舍入到小數點左邊的位置。 |
示例
import numpy as np a = np.array([1.0,5.55, 123, 0.567, 25.532]) print 'Original array:' print a print '\n' print 'After rounding:' print np.around(a) print np.around(a, decimals = 1) print np.around(a, decimals = -1)
它產生以下輸出:
Original array: [ 1. 5.55 123. 0.567 25.532] After rounding: [ 1. 6. 123. 1. 26. ] [ 1. 5.6 123. 0.6 25.5] [ 0. 10. 120. 0. 30. ]
numpy.floor()
此函式返回不大於輸入引數的最大整數。標量 x 的 floor 是最大的整數 i,使得 i <= x。請注意,在 Python 中,向下取整總是遠離 0 舍入。
示例
import numpy as np a = np.array([-1.7, 1.5, -0.2, 0.6, 10]) print 'The given array:' print a print '\n' print 'The modified array:' print np.floor(a)
它產生以下輸出:
The given array: [ -1.7 1.5 -0.2 0.6 10. ] The modified array: [ -2. 1. -1. 0. 10.]
numpy.ceil()
ceil() 函式返回輸入值的向上取整,即標量 x 的 ceil 是最小的整數 i,使得 i >= x。
示例
import numpy as np a = np.array([-1.7, 1.5, -0.2, 0.6, 10]) print 'The given array:' print a print '\n' print 'The modified array:' print np.ceil(a)
它將產生以下輸出:
The given array: [ -1.7 1.5 -0.2 0.6 10. ] The modified array: [ -1. 2. -0. 1. 10.]
廣告