已知等差數列的首項 \( a \) 和公差 \( d \) 如下所示,寫出該等差數列的前三項
\( a=\sqrt{2}, \quad d=\frac{1}{\sqrt{2}} \)
已知
\( a=\sqrt{2}, d=\frac{1}{\sqrt{2}} \)
要求
我們需要寫出給定等差數列的前三項。
解答
首項 $a_1=a=\sqrt{2}$
第二項 $a_2=a_1+d=\sqrt{2}+\frac{1}{\sqrt{2}}=\frac{\sqrt2 \times \sqrt2+1}{\sqrt2}=\frac{2+1}{\sqrt{2}}=\frac{3}{\sqrt{2}}$
第三項 $a_3=a_2+d=\sqrt{2}+\frac{2}{\sqrt{2}}=\frac{\sqrt2 \times \sqrt2+2}{\sqrt2}=\frac{4}{\sqrt{2}}$
因此,給定等差數列的前三項是 $\sqrt{2}, \frac{3}{\sqrt{2}}, \frac{4}{\sqrt{2}}$。
- 相關文章
- 已知 \( a \) 和 \( d \) 如下所示,寫出等差數列的前三項:\( a=\frac{1}{2}, d=-\frac{1}{6} \)
- 已知 \( a \) 和 \( d \) 如下所示,寫出等差數列的前三項:\( a=-5, d=-3 \)
- 已知首項 $a$ 和公差 $d$ 如下所示,寫出等差數列的前四項:$a = -1, d = \frac{1}{2}$
- 已知首項 $a$ 和公差 $d$ 如下所示,寫出等差數列的前四項:$a = -2, d = 0$
- 已知首項 a 和公差 d 如下所示,寫出等差數列:$a = -1, d= \frac{1}{2}$
- 下列哪些是等差數列?如果是等差數列,求出公差 $d$ 並寫出接下來的三項。$-\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, -\frac{1}{2}, …….$
- 已知首項 $a$ 和公差 $d$ 如下所示,寫出等差數列的前四項:(i) $a = 10, d = 10$(ii) $a = -2, d = 0$(iii) $a = 4, d = -3$(iv) $a = -1, d = \frac{1}{2}$(v) $a = -1.25, d = -0.25$
- 化簡下列式子:$(\frac{\sqrt{3}}{\sqrt{2}+1})^2 + (\frac{\sqrt{3}}{\sqrt{2}-1})^2 +(\frac{\sqrt{2}}{\sqrt{3}})^2 $
- 下列哪些是等差數列?如果是等差數列,求出公差 $d$ 並寫出接下來的三項。(i) \( 2,4,8,16, \ldots \)(ii) \( 2, \frac{5}{2}, 3, \frac{7}{2}, \ldots \)(iii) \( -1.2,-3.2,-5.2,-7.2, \ldots \)(iv) \( -10,-6,-2,2, \ldots \)(v) \( 3,3+\sqrt{2}, 3+2 \sqrt{2}, 3+3 \sqrt{2}, \ldots \)(vi) \( 0.2,0.22,0.222,0.2222, \ldots \)(vii) \( 0,-4,-8,-12, \ldots \)(viii) \( -\frac{1}{2},-\frac{1}{2},-\frac{1}{2},-\frac{1}{2}, \ldots \)(ix) \( 1,3,9,27, \ldots \)(x) \( a, 2 a, 3 a, 4 a, \ldots \)(xi) \( a, a^{2}, a^{3}, a^{4}, \ldots \)(xii) \( \sqrt{2}, \sqrt{8}, \sqrt{18}, \sqrt{32}, \ldots \)(xiii) \( \sqrt{3}, \sqrt{6}, \sqrt{9}, \sqrt{12}, \ldots \)(xiv) \( 1^{2}, 3^{2}, 5^{2}, 7^{2}, \ldots \)(xv) \( 1^{2}, 5^{2}, 7^{2}, 73, \ldots \)
- 如果 \( \sin \mathrm{A}=\frac{1}{2} \),則 \( \cot \mathrm{A} \) 的值是(A) \( \sqrt{3} \)(B) \( \frac{1}{\sqrt{3}} \)(C) \( \frac{\sqrt{3}}{2} \)(D) 1
- 下列哪些是等差數列?如果是等差數列,求出公差 $d$ 並寫出接下來的三項。$\sqrt2, \sqrt8, \sqrt{18}, \sqrt{32}, …..$
- 化簡:\( \frac{1}{2+\sqrt{3}}+\frac{2}{\sqrt{5}-\sqrt{3}}+\frac{1}{2-\sqrt{5}} \)
- 寫出根為 $\sqrt{\frac{3}{2}}, -\sqrt{\frac{3}{2}}$ 的多項式。
- $\frac{\sqrt{5}+\sqrt{2}}{\sqrt{5}-\sqrt{2}}+\frac{\sqrt{5}-\sqrt{2}}{\sqrt{5}+\sqrt{2}}=a+b \sqrt{10}$,求 a 和 b。
- 已知首項 $a$ 和公差 $d$ 如下所示,寫出等差數列的前四項:$a = 4, d = -3$