Python Pandas - 如何對具有毫秒頻率的 DateTimeIndex 執行地板運算
若要對具有毫秒頻率的 DateTimeIndex 執行地板運算,請使用 DateTimeIndex.floor() 方法。對於毫秒頻率,請使用具有值 'ms' 的 freq 引數。
首先,匯入所需的庫 -
import pandas as pd
帶有周期 7 和頻率為 S(即秒)的 DatetimeIndex -
datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='40S')顯示 DateTimeIndex -
print("DateTimeIndex...\n", datetimeindex)
具有毫秒頻率的 DateTimeIndex 日期上的地板運算。對於毫秒頻率,我們使用了 'ms' -
print("\nPerforming floor operation with milliseconds frequency...\n",
datetimeindex.floor(freq='ms'))示例
以下是程式碼 -
import pandas as pd
# DatetimeIndex with period 7 and frequency as S i.e. seconds
# timezone is Australia/Adelaide
datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='40S')
# display DateTimeIndex
print("DateTimeIndex...\n", datetimeindex)
# display DateTimeIndex frequency
print("DateTimeIndex frequency...\n", datetimeindex.freq)
# Floor operation on DateTimeIndex date with milliseconds frequency
# For milliseconds frequency, we have used 'ms'
print("\nPerforming floor operation with milliseconds frequency...\n",
datetimeindex.floor(freq='ms'))輸出
這將生成以下程式碼 -
DateTimeIndex... DatetimeIndex(['2021-10-18 07:20:32.261811624+10:30', '2021-10-18 07:21:12.261811624+10:30', '2021-10-18 07:21:52.261811624+10:30', '2021-10-18 07:22:32.261811624+10:30', '2021-10-18 07:23:12.261811624+10:30'], dtype='datetime64[ns, Australia/Adelaide]', freq='40S') DateTimeIndex frequency... <40 * Seconds> Performing floor operation with milliseconds frequency... DatetimeIndex(['2021-10-18 07:20:32.261000+10:30', '2021-10-18 07:21:12.261000+10:30', '2021-10-18 07:21:52.261000+10:30', '2021-10-18 07:22:32.261000+10:30', '2021-10-18 07:23:12.261000+10:30'], dtype='datetime64[ns, Australia/Adelaide]', freq=None)
廣告
資料結構
網路
RDBMS
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP