Python Pandas - 如何對以秒為頻率的 DateTimeIndex 執行向上取整操作


要對以秒為頻率的 DateTimeIndex 執行向上取整操作,可以使用 **DateTimeIndex.ceil()** 方法。對於秒頻率,使用 **freq** 引數,其值為 **‘S’**。

首先,匯入所需的庫 -

import pandas as pd

建立一個週期為 5 且頻率為 S(即秒)的 DatetimeIndex -

datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='40S')

顯示 DateTimeIndex -

print("DateTimeIndex...\n", datetimeindex)

對 DateTimeIndex 日期執行以秒為頻率的向上取整操作。對於秒頻率,我們使用了 'S' -

print("\nPerforming ceil operation with seconds frequency...\n",
datetimeindex.ceil(freq='S'))

示例

以下是程式碼 -

import pandas as pd

# DatetimeIndex with period 5 and frequency as S i.e. seconds
# timezone is Australia/Adelaide
datetimeindex = pd.date_range('2021-10-18 07:20:32.261811624', periods=5,
tz='Australia/Adelaide', freq='40S')

# display DateTimeIndex
print("DateTimeIndex...\n", datetimeindex)

# display DateTimeIndex frequency
print("DateTimeIndex frequency...\n", datetimeindex.freq)

# getting the second
res = datetimeindex.second

# display only the second
print("\nThe second from DateTimeIndex...\n", res)

# Ceil operation on DateTimeIndex date with seconds frequency
# For seconds frequency, we have used 'S'
print("\nPerforming ceil operation with seconds frequency...\n",
datetimeindex.ceil(freq='S'))

輸出

這將生成以下程式碼 -

DateTimeIndex...
DatetimeIndex(['2021-10-18 07:20:32.261811624+10:30',
'2021-10-18 07:21:12.261811624+10:30',
'2021-10-18 07:21:52.261811624+10:30',
'2021-10-18 07:22:32.261811624+10:30',
'2021-10-18 07:23:12.261811624+10:30'],
dtype='datetime64[ns, Australia/Adelaide]', freq='40S')
DateTimeIndex frequency...
<40 * Seconds>

The second from DateTimeIndex...
Int64Index([32, 12, 52, 32, 12], dtype='int64')

Performing ceil operation with seconds frequency...
DatetimeIndex(['2021-10-18 07:20:33+10:30', '2021-10-18 07:21:13+10:30',
'2021-10-18 07:21:53+10:30', '2021-10-18 07:22:33+10:30',
'2021-10-18 07:23:13+10:30'],
dtype='datetime64[ns, Australia/Adelaide]', freq=None)

更新於: 2021年10月19日

98 次瀏覽

開啟你的 職業生涯

透過完成課程獲得認證

立即開始
廣告

© . All rights reserved.