Python Pandas - 對具有微秒頻率的 TimeDeltaIndex 執行向下取整運算


要對具有微秒頻率的 TimeDeltaIndex 執行向下取整運算,請使用 **TimeDeltaIndex.floor()** 方法。對於微秒頻率,請使用值為 **‘us’** 的 **freq** 引數。

首先,匯入所需的庫:

import pandas as pd

建立一個 TimeDeltaIndex 物件。我們使用 'data' 引數設定了類似 timedelta 的資料:

tdIndex = pd.TimedeltaIndex(data =['5 day 8h 20min 35us 45ns', '+17:42:19.999999',
'7 day 3h 08:16:02.000055', '+22:35:25.999999'])

顯示 TimedeltaIndex:

print("TimedeltaIndex...\n", tdIndex)

對 TimeDeltaIndex 日期進行具有微秒頻率的向下取整運算。對於微秒頻率,我們使用了 'us':

print("\nPerforming Floor operation with microseconds frequency...\n",
tdIndex.floor(freq='us'))

示例

以下是程式碼:

import pandas as pd

# Create a TimeDeltaIndex object
# We have set the timedelta-like data using the 'data' parameter
tdIndex = pd.TimedeltaIndex(data =['5 day 8h 20min 35us 45ns', '+17:42:19.999999',
'7 day 3h 08:16:02.000055', '+22:35:25.999999'])

# display TimedeltaIndex
print("TimedeltaIndex...\n", tdIndex)

# Return a dataframe of the components of TimeDeltas
print("\nThe Dataframe of the components of TimeDeltas...\n", tdIndex.components)

# Floor operation on TimeDeltaIndex date with microseconds frequency
# For microseconds frequency, we have used 'us'
print("\nPerforming Floor operation with microseconds frequency...\n",
tdIndex.floor(freq='us'))

輸出

這將產生以下程式碼:

TimedeltaIndex...
TimedeltaIndex(['5 days 08:20:00.000035045', '0 days 17:42:19.999999',
'7 days 11:16:02.000055', '0 days 22:35:25.999999'],
dtype='timedelta64[ns]', freq=None)

The Dataframe of the components of TimeDeltas...
   days hours minutes seconds milliseconds microseconds nanoseconds
0    5     8      20      0           0            35         45
1    0    17      42     19         999           999          0
2    7    11      16      2           0            55          0
3    0    22      35     25         999           999          0

Performing Floor operation with microseconds frequency...
TimedeltaIndex(['5 days 08:20:00.000035', '0 days 17:42:19.999999',
'7 days 11:16:02.000055', '0 days 22:35:25.999999'],
dtype='timedelta64[ns]', freq=None)

更新於:2021年10月20日

81 次檢視

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.