找出兩個連續自然數,其乘積為20。
已知
兩個連續自然數的乘積為20。
要求
我們必須找到這兩個數。
解答
設這兩個連續自然數為 $x$ 和 $x+1$。
根據題意,
$x(x+1)=20$
$x^2+x=20$
$x^2+x-20=0$
用因式分解法求解 $x$,得到:
$x^2+x-20=0$
$x^2+5x-4x-20=0$
$x(x+5)-4(x+5)=0$
$(x-4)(x+5)=0$
$x-4=0$ 或 $x+5=0$
$x=4$ 或 $x=-5$
$-5$ 不是自然數。
因此,乘積為20的兩個連續自然數是 $4$ 和 $4+1=5$。
廣告
資料結構
網路
關係資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP