
- Elasticsearch 教程
- Elasticsearch - 首頁
- Elasticsearch - 基本概念
- Elasticsearch - 安裝
- Elasticsearch - 資料填充
- 版本間遷移
- Elasticsearch - API 約定
- Elasticsearch - 文件API
- Elasticsearch - 搜尋API
- Elasticsearch - 聚合
- Elasticsearch - 索引API
- Elasticsearch - CAT API
- Elasticsearch - 叢集API
- Elasticsearch - 查詢DSL
- Elasticsearch - 對映
- Elasticsearch - 分析
- Elasticsearch - 模組
- Elasticsearch - 索引模組
- Elasticsearch - Ingest 節點
- Elasticsearch - 管理索引生命週期
- Elasticsearch - SQL 訪問
- Elasticsearch - 監控
- Elasticsearch - 資料彙總
- Elasticsearch - 凍結索引
- Elasticsearch - 測試
- Elasticsearch - Kibana 儀表盤
- Elasticsearch - 按欄位過濾
- Elasticsearch - 資料表格
- Elasticsearch - 區域地圖
- Elasticsearch - 餅圖
- Elasticsearch - 面積圖和條形圖
- Elasticsearch - 時間序列
- Elasticsearch - 標籤雲
- Elasticsearch - 熱力圖
- Elasticsearch - Canvas
- Elasticsearch - 日誌UI
- Elasticsearch 有用資源
- Elasticsearch - 快速指南
- Elasticsearch - 有用資源
- Elasticsearch - 討論
Elasticsearch - 查詢DSL
在 Elasticsearch 中,搜尋是透過使用基於 JSON 的查詢來執行的。一個查詢由兩個子句組成:
葉子查詢子句 - 這些子句是匹配、術語或範圍,它們在特定欄位中查詢特定值。
複合查詢子句 - 這些查詢是葉子查詢子句和其他複合查詢的組合,用於提取所需的資訊。
Elasticsearch 支援大量的查詢。查詢以一個查詢關鍵字開頭,然後在 JSON 物件的形式中包含條件和過濾器。下面描述了不同型別的查詢。
匹配所有查詢
這是最基本的查詢;它返回所有內容,並且每個物件的得分均為 1.0。
POST /schools/_search { "query":{ "match_all":{} } }
執行以上程式碼後,我們將得到以下結果:
{ "took" : 7, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "schools", "_type" : "school", "_id" : "5", "_score" : 1.0, "_source" : { "name" : "Central School", "description" : "CBSE Affiliation", "street" : "Nagan", "city" : "paprola", "state" : "HP", "zip" : "176115", "location" : [ 31.8955385, 76.8380405 ], "fees" : 2200, "tags" : [ "Senior Secondary", "beautiful campus" ], "rating" : "3.3" } }, { "_index" : "schools", "_type" : "school", "_id" : "4", "_score" : 1.0, "_source" : { "name" : "City Best School", "description" : "ICSE", "street" : "West End", "city" : "Meerut", "state" : "UP", "zip" : "250002", "location" : [ 28.9926174, 77.692485 ], "fees" : 3500, "tags" : [ "fully computerized" ], "rating" : "4.5" } } ] } }
全文查詢
這些查詢用於搜尋全文文字,例如章節或新聞文章。此查詢根據與該特定索引或文件關聯的分析器工作。在本節中,我們將討論不同型別的全文查詢。
匹配查詢
此查詢將文字或短語與一個或多個欄位的值進行匹配。
POST /schools*/_search { "query":{ "match" : { "rating":"4.5" } } }
執行以上程式碼後,我們將得到如下所示的響應:
{ "took" : 44, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 0.47000363, "hits" : [ { "_index" : "schools", "_type" : "school", "_id" : "4", "_score" : 0.47000363, "_source" : { "name" : "City Best School", "description" : "ICSE", "street" : "West End", "city" : "Meerut", "state" : "UP", "zip" : "250002", "location" : [ 28.9926174, 77.692485 ], "fees" : 3500, "tags" : [ "fully computerized" ], "rating" : "4.5" } } ] } }
多匹配查詢
此查詢將文字或短語與多個欄位進行匹配。
POST /schools*/_search { "query":{ "multi_match" : { "query": "paprola", "fields": [ "city", "state" ] } } }
執行以上程式碼後,我們將得到如下所示的響應:
{ "took" : 12, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 0.9808292, "hits" : [ { "_index" : "schools", "_type" : "school", "_id" : "5", "_score" : 0.9808292, "_source" : { "name" : "Central School", "description" : "CBSE Affiliation", "street" : "Nagan", "city" : "paprola", "state" : "HP", "zip" : "176115", "location" : [ 31.8955385, 76.8380405 ], "fees" : 2200, "tags" : [ "Senior Secondary", "beautiful campus" ], "rating" : "3.3" } } ] } }
查詢字串查詢
此查詢使用查詢解析器和 query_string 關鍵字。
POST /schools*/_search { "query":{ "query_string":{ "query":"beautiful" } } }
執行以上程式碼後,我們將得到如下所示的響應:
{ "took" : 60, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, ………………………………….
術語級查詢
這些查詢主要處理結構化資料,例如數字、日期和列舉。
POST /schools*/_search { "query":{ "term":{"zip":"176115"} } }
執行以上程式碼後,我們將得到如下所示的響應:
…………………………….. hits" : [ { "_index" : "schools", "_type" : "school", "_id" : "5", "_score" : 0.9808292, "_source" : { "name" : "Central School", "description" : "CBSE Affiliation", "street" : "Nagan", "city" : "paprola", "state" : "HP", "zip" : "176115", "location" : [ 31.8955385, 76.8380405 ], } } ] …………………………………………..
範圍查詢
此查詢用於查詢具有給定值範圍內的值的那些物件。為此,我們需要使用以下運算子:
- gte - 大於等於
- gt - 大於
- lte - 小於等於
- lt - 小於
例如,觀察以下程式碼:
POST /schools*/_search { "query":{ "range":{ "rating":{ "gte":3.5 } } } }
執行以上程式碼後,我們將得到如下所示的響應:
{ "took" : 24, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 1, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ { "_index" : "schools", "_type" : "school", "_id" : "4", "_score" : 1.0, "_source" : { "name" : "City Best School", "description" : "ICSE", "street" : "West End", "city" : "Meerut", "state" : "UP", "zip" : "250002", "location" : [ 28.9926174, 77.692485 ], "fees" : 3500, "tags" : [ "fully computerized" ], "rating" : "4.5" } } ] } }
還存在其他型別的術語級查詢,例如:
存在查詢 - 如果某個欄位具有非空值。
缺失查詢 - 這與存在查詢完全相反,此查詢搜尋缺少特定欄位或欄位值為 null 的物件。
萬用字元或正則表示式查詢 - 此查詢使用正則表示式在物件中查詢模式。
複合查詢
這些查詢是不同查詢的集合,透過使用布林運算子(如 and、or、not)或用於不同索引或具有函式呼叫等方式相互合併。
POST /schools/_search { "query": { "bool" : { "must" : { "term" : { "state" : "UP" } }, "filter": { "term" : { "fees" : "2200" } }, "minimum_should_match" : 1, "boost" : 1.0 } } }
執行以上程式碼後,我們將得到如下所示的響應:
{ "took" : 6, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 0, "relation" : "eq" }, "max_score" : null, "hits" : [ ] } }
地理查詢
這些查詢處理地理位置和地理點。這些查詢有助於查詢靠近任何位置的學校或任何其他地理物件。您需要使用地理點資料型別。
PUT /geo_example { "mappings": { "properties": { "location": { "type": "geo_shape" } } } }
執行以上程式碼後,我們將得到如下所示的響應:
{ "acknowledged" : true, "shards_acknowledged" : true, "index" : "geo_example" }
現在我們將資料釋出到上面建立的索引中。
POST /geo_example/_doc?refresh { "name": "Chapter One, London, UK", "location": { "type": "point", "coordinates": [11.660544, 57.800286] } }
執行以上程式碼後,我們將得到如下所示的響應:
{ "took" : 1, "timed_out" : false, "_shards" : { "total" : 1, "successful" : 1, "skipped" : 0, "failed" : 0 }, "hits" : { "total" : { "value" : 2, "relation" : "eq" }, "max_score" : 1.0, "hits" : [ "_index" : "geo_example", "_type" : "_doc", "_id" : "hASWZ2oBbkdGzVfiXHKD", "_score" : 1.0, "_source" : { "name" : "Chapter One, London, UK", "location" : { "type" : "point", "coordinates" : [ 11.660544, 57.800286 ] } } } }