畫一對與半徑為 5 釐米的圓相切的切線,它們彼此之間的夾角為 60°。
已知:
圓的半徑為 5 釐米。
要求:
我們必須畫一對與圓相切的切線,它們彼此之間的夾角為 60°。
解:

作圖步驟:。
1. 畫一個半徑為 5 釐米,圓心為 O 的圓。
2. 切線彼此之間的夾角為 60°。如果 PA 和 PB 是所要求的圓的切線,則∠APB = 60°,而 AOBP 是一個圓內接四邊形,則∠AOB = 180° - 60° = 120°。
3. 在圓周上取一點 A,在 O 點上畫一個與 OA 成 120° 角的角,使得∠AOB = 120°。B 是∠AOB 與圓相交的另一點。
4. 畫一條垂直於 OA 的線。
5. 畫一條垂直於 OB 的線。
6. A 和 B 上的垂線相交於 P 點。
因此,PA 和 PB 是所要求的與圓相切且彼此之間夾角為 60° 的一對切線。
廣告