以下這對線性方程組是否有解?請說明你的答案。
\( 3 x+y-3=0 \)
\( 2 x+\frac{2}{3} y=2 \)
已知
給定的方程組為:
\( 3 x+y-3=0 \)
\( 2 x+\frac{2}{3} y=2 \)
求解
我們需要確定給定的方程組是否有解。
解
我們知道:
無解的條件是
$\frac{a_1}{a_2}=\frac{b_1}{b_2}≠\frac{c_1}{c_2}$
\( 3 x+y-3=0 \)
\( 3(2 x)+3(\frac{2}{3} y)=3(2) \)
$6x+2y-6=0$
這裡:
$a_1=3, b_1=1, c_1=-3$
$a_2=6, b_2=2, c_2=-6$
因此:
$\frac{a_1}{a_2}=\frac{3}{6}=\frac{1}{2}$
$\frac{b_1}{b_2}=\frac{1}{2}$
$\frac{c_1}{c_2}=\frac{-3}{-6}=\frac{1}{2}$
這裡:
$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$
因此,給定的線性方程組表示重合線。
- 相關文章
- 以下這對線性方程組是否有解?請說明你的答案。\( x=2 y \)\( y=2 x \)
- 以下這對線性方程組是否有解?請說明你的答案。\( 2 x+4 y=3 \)\( 12 y+6 x=6 \)
- 以下這對線性方程組是否相容?請說明你的答案。\( x+3 y=11 \)\( 2(2 x+6 y)=22 \)
- 以下這對線性方程組是否相容?請說明你的答案。\( \frac{3}{5} x-y=\frac{1}{2} \)\( \frac{1}{5} x-3 y=\frac{1}{6} \)
- 以下方程組是否表示一對重合線?請說明你的答案。\( -2 x-3 y=1 \)\( 6 y+4 x=-2 \)
- 解以下方程組:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- 以下這對線性方程組是否相容?請說明你的答案。\( -3 x-4 y=12 \)\( 4 y+3 x=12 \)
- 以下方程組是否表示一對重合線?請說明你的答案。\( 3 x+\frac{1}{7} y=3 \)\( 7 x+3 y=7 \)
- 以下方程組是否表示一對重合線?請說明你的答案。\( \frac{x}{2}+y+\frac{2}{5}=0 \)\( 4 x+8 y+\frac{5}{16}=0 \)
- 有一對線性方程組具有唯一解\( x=2, y=-3 \),該方程組是(A) \( x+y=-1 \)\( 2 x-3 y=-5 \)(B) \( 2 x+5 y=-11 \)\( 4 x+10 y=-22 \)(C) \( 2 x-y=1 \)\( 3 x+2 y=0 \)(D) \( x-4 y-14=0 \)\( 5 x-y-13=0 \)
- 解以下方程組:\( x+y=3.3 \)\( \frac{0.6}{3 x-2 y}=-1,3 x-2 y ≠ 0 \)
- 化簡以下每個式子:$(\frac{x}{2}+\frac{y}{3})^{3}-(\frac{x}{2}-\frac{y}{3})^{3}$
- 解以下方程組: $7(y\ +\ 3)\ –\ 2(x\ +\ 2)\ =\ 14$ $4(y\ –\ 2)\ +\ 3(x\ –\ 3)\ =\ 2$
- 用代入法解以下線性方程組。(i) $x + y = 14, x – y = 4$(ii) $s – t = 3, \frac{s}{3} + \frac{t}{2} = 6$(iii) $3x – y = 3, 9x – 3y = 9$(iv) $0.2x + 0.3y = 1.3, 0.4x + 0.5y = 2.3$(v) \( \sqrt{2} x+\sqrt{3} y=0, \sqrt{3} x-\sqrt{8} y=0 \)(vi) \( \frac{3 x}{2}-\frac{5 y}{3}=-2, \frac{x}{3}+\frac{y}{2}=\frac{13}{6} \).
- 透過將以下方程組化為線性方程組來求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \),b>(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)4(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).