化簡下列式子:$(\frac{x}{2}+\frac{y}{3})^{3}-(\frac{x}{2}-\frac{y}{3})^{3}$


已知

$(\frac{x}{2}+\frac{y}{3})^{3}-(\frac{x}{2}-\frac{y}{3})^{3}$

要求

化簡給定表示式。

解答

$(\frac{x}{2}+\frac{y}{3})^{3}-(\frac{x}{2}-\frac{y}{3})^{3}=(\frac{x}{2})^{3}+(\frac{y}{3})^{3}+3 \times(\frac{x}{2})^{2} \times \frac{y}{3}+3\times(\frac{x}{2})\times(\frac{y}{3})^{2}-[(\frac{x}{2})^{3}-(\frac{y}{3})^{3}-3\times(\frac{x}{2})^{2}\times \frac{y}{3}+3\times(\frac{x}{2})\times(\frac{y}{3})^{2}]$

$=[\frac{x^{3}}{8}+\frac{y^{3}}{27}+3 \times \frac{x^{2}}{4} \times \frac{y}{3}+3 \times \frac{x}{2} \times \frac{y^{2}}{9}]-[\frac{x^{3}}{8}-\frac{y^{3}}{27}-3 \times \frac{x^{2}}{4} \times \frac{y}{3}+3 \frac{x}{2} \times \frac{y^{2}}{9}]$

$=\frac{x^{3}}{8}+\frac{y^{3}}{27}+\frac{x^{2} y}{4}+\frac{x y^{2}}{6}-\frac{x^{3}}{8}+\frac{y^{3}}{27}+\frac{x^{2} y}{4}-\frac{x y^{2}}{6}$

$=\frac{2 y^{3}}{27}+\frac{x^{2} y}{2}$

因此,$(\frac{x}{2}+\frac{y}{3})^{3}-(\frac{x}{2}-\frac{y}{3})^{3}=\frac{2 y^{3}}{27}+\frac{x^{2} y}{2}$。

更新於:2022年10月10日

35 次瀏覽

啟動你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.