將以下每個表示式因式分解:\( \left(\frac{x}{2}+y+\frac{z}{3}\right)^{3}+\left(\frac{x}{3}-\frac{2 y}{3}+z\right)^{3} +\left(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3}\right)^{3} \)
已知
需要做
我們需要將給定的表示式相乘。
解答
我們知道,
$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$
如果 $a + b + c = 0$,則 $a^3 + b^3 + c^3 = 3abc$
這裡,
$\frac{x}{2}+y+\frac{z}{3}+\frac{x}{3}-\frac{2 y}{3}+z+\frac{-5 x}{6}-\frac{y}{3}-\frac{4}{3} z=\frac{x}{2}+\frac{x}{3}-\frac{5 x}{6}+y-\frac{2 y}{3}-\frac{y}{3}+\frac{z}{3}+z-\frac{4}{3} z$
$=\frac{3 x+2 x-5 x}{6}+\frac{3 y-2 y-y}{3}+\frac{z+3 z-4 z}{3}$
$=0+0+0$
$=0$
因此,
$(\frac{x}{2}+y+\frac{z}{3})^{3}+(\frac{x}{3}-\frac{2 y}{3}+z)^{3} +(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3})^{3} = 3 (\frac{x}{2}+y+\frac{z}{3})(\frac{x}{3}-\frac{2 y}{3}+z)(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3})$
因此,$(\frac{x}{2}+y+\frac{z}{3})^{3}+(\frac{x}{3}-\frac{2 y}{3}+z)^{3} +(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3})^{3} = 3 (\frac{x}{2}+y+\frac{z}{3})(\frac{x}{3}-\frac{2 y}{3}+z)(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3})$.
資料結構
網路
關係資料庫管理系統
作業系統
Java
iOS
HTML
CSS
Android
Python
C 語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP