驗證有理數加法的結合律,即 (x + y) + z = x + (y + z),其中
(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)
(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)
(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)
(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
解題步驟
我們需要驗證給定有理數加法的結合律。
解答
結合律解釋說,數字的加法和乘法無論如何分組都是可能的。
因此,
(i) $(x+y)+z=(\frac{1}{2}+\frac{2}{3})+\frac{-1}{5}$
$=(\frac{1\times3+2\times2}{6})+\frac{-1}{5}$ (2和3的最小公倍數是6)
$=(\frac{3+4}{6})+\frac{-1}{5}$
$=\frac{7}{6}+\frac{-1}{5}$
$=\frac{7\times5+(-1)\times6}{30}$ (5和6的最小公倍數是30)
$=\frac{35-6}{30}$
$=\frac{29}{30}$
$x+(y+z)=\frac{1}{2}+(\frac{2}{3}+\frac{-1}{5})$
$=\frac{1}{2}+(\frac{2\times5+(-1)\times3}{15})$ (3和5的最小公倍數是15)
$=\frac{1}{2}+(\frac{10-3}{15})$
$=\frac{1}{2}+\frac{7}{15}$
$=\frac{1\times15+7\times2}{30}$ (2和15的最小公倍數是30)
$=\frac{15+14}{30}$
$=\frac{29}{30}$
因此驗證成立。
(ii) $(x+y)+z=(\frac{-2}{5}+\frac{4}{3})+\frac{-7}{10}$
$=(\frac{-2\times3+4\times5}{15})+\frac{-7}{10}$ (5和3的最小公倍數是15)
$=(\frac{-6+20}{15})+\frac{-7}{10}$
$=\frac{14}{15}+\frac{-7}{10}$
$=\frac{14\times2+(-7)\times3}{30}$ (15和10的最小公倍數是30)
$=\frac{28-21}{30}$
$=\frac{7}{30}$
$x+(y+z)=\frac{-2}{5}+(\frac{4}{3}+\frac{-7}{10})$
$=\frac{-2}{5}+(\frac{4\times10+(-7)\times3}{30})$ (3和10的最小公倍數是30)
$=\frac{-2}{5}+(\frac{40-21}{30})$
$=\frac{-2}{5}+\frac{19}{30}$
$=\frac{-2\times6+19\times1}{30}$ (5和30的最小公倍數是30)
$=\frac{-12+19}{30}$
$=\frac{7}{30}$
$(x+y)+z=x+(y+z)$
因此驗證成立。
(iii) $(x+y)+z=(\frac{-7}{11}+\frac{2}{-5})+\frac{-3}{22}$
$=(\frac{-7\times5+(-2)\times11}{55})+\frac{-3}{22}$ (11和5的最小公倍數是55)
$=(\frac{-35+(-22)}{55})+\frac{-3}{22}$
$=\frac{-57}{55}+\frac{-3}{22}$
$=\frac{-57\times2+(-3)\times5}{110}$ (55和22的最小公倍數是110)
$=\frac{-114-15}{110}$
$=\frac{-129}{110}$
$x+(y+z)=\frac{-7}{11}+(\frac{2}{-5}+\frac{-3}{22})$
$=\frac{-7}{11}+(\frac{-2\times22+(-3)\times5}{110})$ (5和22的最小公倍數是110)
$=\frac{-7}{11}+(\frac{-44-15}{110})$
$=\frac{-7}{11}+\frac{-59}{110}$
$=\frac{-7\times10+(-59)\times1}{110}$ (11和110的最小公倍數是110)
$=\frac{-70-59}{110}$
$=\frac{-129}{110}$
$(x+y)+z=x+(y+z)$
因此驗證成立。
(iv) $(x+y)+z=(-2+\frac{3}{5})+\frac{-4}{3}$
$=(\frac{-2\times5+3\times1}{5})+\frac{-4}{3}$ (1和5的最小公倍數是5)
$=(\frac{-10+3}{5})+\frac{-4}{3}$
$=\frac{-7}{5}+\frac{-4}{3}$
$=\frac{-7\times3+(-4)\times5}{15}$ (5和3的最小公倍數是15)
$=\frac{-21-20}{15}$
$=\frac{-41}{15}$
$x+(y+z)=-2+(\frac{3}{5}+\frac{-4}{3})$
$=-2+(\frac{3\times3+(-4)\times5}{15})$ (5和3的最小公倍數是15)
$=-2+(\frac{9-20}{15})$
$=-2+\frac{-11}{15}$
$=\frac{-2\times15+(-11)\times1}{15}$ (1和15的最小公倍數是15)
$=\frac{-30-11}{15}$
$=\frac{-41}{15}$
$(x+y)+z=x+(y+z)$
因此驗證成立。
- 相關文章
- 驗證等式:$x \times(y + z) = x \times y + x \times z$,其中:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- 驗證等式:$x \times (y \times z) = (x \times y) \times z$,其中:(i) \( x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} \)(ii) \( x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \)(iii) \( x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \)(iv) \( x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} \)
- 計算 $(x +y) \div (x - y)$ 的值,其中:(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- 計算下列差值:(i) 從 $12xy$ 中減去 $-5xy$(ii) 從 $-7a^2$ 中減去 $2a^2$(iii) 從 \( 3 a-5 b \) 中減去 \( 2 a-b \)(iv) 從 \( 4 x^{3}+x^{2}+x+6 \) 中減去 \( 2 x^{3}-4 x^{2}+3 x+5 \)(v) 從 \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \) 中減去 \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \)(vi) 從 \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \) 中減去 \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \)(vii) 從 \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \) 中減去 \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \)(viii) 從 \( \frac{3}{5} b c-\frac{4}{5} a c \) 中減去 \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \)
- 因式分解下列表達式:\( \left(\frac{x}{2}+y+\frac{z}{3}\right)^{3}+\left(\frac{x}{3}-\frac{2 y}{3}+z\right)^{3} +\left(-\frac{5 x}{6}-\frac{y}{3}-\frac{4 z}{3}\right)^{3} \)
- 驗證等式 \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- 如果 \( 2^{x}=3^{y}=12^{z} \),證明 \( \frac{1}{z}=\frac{1}{y}+\frac{2}{x} \).
- 驗證:$x\times(y\times z)=(x\times y)\times z$,其中 $x=\frac{1}{2},\ y=\frac{1}{3}$ 且 $z=\frac{1}{4}$。
- 化簡下列表達式:\( (x+y+z)^{2}+\left(x+\frac{y}{2}+\frac{z}{3}\right)^{2}-\left(\frac{x}{2}+\frac{y}{3}+\frac{z}{4}\right)^{2} \)
- 計算下列代數表示式的和:(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 計算下列乘積:\( \frac{-8}{27} x y z\left(\frac{3}{2} x y z^{2}-\frac{9}{4} x y^{2} z^{3}\right) \)
- 將下列方程組化簡為線性方程組,然後求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \)(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 計算下列乘積:\( \frac{-4}{27} x y z\left[\frac{9}{2} x^{2} y z-\frac{3}{4} x y z^{2}\right] \)
- 計算下列乘積:(i) $(x + 4) (x + 7)$(ii) $(x - 11) (x + 4)$(iii) $(x + 7) (x - 5)$(iv) $(x - 3) (x - 2)$(v) $(y^2 - 4) (y^2 - 3)$(vi) $(x + \frac{4}{3}) (x + \frac{3}{4})$(vii) $(3x + 5) (3x + 11)$(viii) $(2x^2 - 3) (2x^2 + 5)$(ix) $(z^2 + 2) (z^2 - 3)$(x) $(3x - 4y) (2x - 4y)$(xi) $(3x^2 - 4xy) (3x^2 - 3xy)$(xii) $(x + \frac{1}{5}) (x + 5)$(xiii) $(z + \frac{3}{4}) (z + \frac{4}{3})$(xiv) $(x^2 + 4) (x^2 + 9)$(xv) $(y^2 + 12) (y^2 + 6)$(xvi) $(y^2 + \frac{5}{7}) (y^2 - \frac{14}{5})$(xvii) $(p^2 + 16) (p^2 - \frac{1}{4})$
- 驗證等式 \( x \times(y+z)=(x \times y)+(x \times z) \),其中 \( x=\frac{-5}{2}, y=\frac{1}{2} \) 且 \( z=-\frac{10}{7} \)。