以下方程組是否表示一對重合直線?請說明理由。
\( 3 x+\frac{1}{7} y=3 \)\( 7 x+3 y=7 \)


要找到

我們必須找到給定的方程組對是否表示一對重合直線。

解決方案

我們知道,

重合直線的條件是,

$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$

(i) \(  3 x+\frac{1}{7} y=3 \)

$7(3x)+7(\frac{1}{7}y)=7(3)$

$21x+y-21=0$

\( 7 x+3 y-7=0 \)

這裡,

$a_1=21, b_1=1, c_1=-21$

$a_2=7, b_2=3, c_2=-7$

所以,

$\frac{a_1}{a_2}=\frac{21}{7}=3$

$\frac{b_1}{b_2}=\frac{1}{3}$

$\frac{c_1}{c_2}=\frac{-21}{-7}=3$

這裡,

$\frac{a_1}{a_2}≠\frac{b_1}{b_2}$

因此,給定的線性方程組有唯一的解。

(ii) \( -2 x-3 y-1=0 \)

\( 6 y+4 x+2=0 \)

這裡,

$a_1=-2, b_1=-3, c_1=-1$

$a_2=4, b_2=6, c_2=2$

所以,

$\frac{a_1}{a_2}=\frac{-2}{4}=\frac{-1}{2}$

$\frac{b_1}{b_2}=\frac{-3}{6}=\frac{-1}{2}$

$\frac{c_1}{c_2}=\frac{-1}{2}$

這裡,

$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$

因此,給定的線性方程組表示重合直線。  

(iii) \(  \frac{x}{2}+y+\frac{2}{5}=0 \)

$10(\frac{x}{2})+10(y)+10(\frac{2}{5})=0$

$5x+10y+4=0$

\( 4 x+8 y+\frac{5}{16}=0 \)

$16(4x)+16(8y)+16(\frac{5}{16})=0$

$64x+128y+5=0$

這裡,

$a_1=5, b_1=10, c_1=4$

$a_2=64, b_2=128, c_2=5$

所以,

$\frac{a_1}{a_2}=\frac{5}{64}$

$\frac{b_1}{b_2}=\frac{10}{128}=\frac{5}{64}$

$\frac{c_1}{c_2}=\frac{4}{5}$

這裡,

$\frac{a_1}{a_2}=\frac{b_1}{b_2}≠\frac{c_1}{c_2}$

因此,給定的線性方程組無解。 

更新於: 2022年10月10日

36 次檢視

開啟您的 職業生涯

完成課程獲得認證

開始學習
廣告

© . All rights reserved.