尤拉路徑與歐拉回路
尤拉路徑是一條路徑,我們可以透過它精確訪問每條邊一次。我們可以多次使用相同的頂點。歐拉回路是一種特殊的尤拉路徑。當尤拉路徑的起始頂點也與該路徑的結束頂點相連時,則稱為歐拉回路。

為了檢測路徑和迴路,我們必須遵循以下條件:
- 圖必須是連通的。
- 當恰好有兩個頂點具有奇數度時,它是一條尤拉路徑。
- 現在,當無向圖的任何頂點都沒有奇數度時,它就是一個歐拉回路。
輸入和輸出
Input: Adjacency matrix of a graph. 0 1 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 Output: The graph has an Eulerian path.
演算法
traverse(u, visited)
輸入:起始節點 u 和已訪問節點,用於標記哪個節點已被訪問。
輸出:遍歷所有連通頂點。
Begin mark u as visited for all vertex v, if it is adjacent with u, do if v is not visited, then traverse(v, visited) done End
isConnected(graph)
輸入:圖。
輸出:如果圖是連通的,則返回 True。
Begin define visited array for all vertices u in the graph, do make all nodes unvisited traverse(u, visited) if any unvisited node is still remaining, then return false done return true End
isEulerian(Graph)
輸入:給定的圖。
輸出:如果是非尤拉圖則返回 0,如果具有尤拉路徑則返回 1,如果找到歐拉回路則返回 2。
Begin if isConnected() is false, then return false define list of degree for each node oddDegree := 0 for all vertex i in the graph, do for all vertex j which are connected with i, do increase degree done if degree of vertex i is odd, then increase dooDegree done if oddDegree > 2, then return 0 if oddDegree = 0, then return 2 else return 1 End
示例
#include<iostream>
#include<vector>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {
{0, 1, 1, 1, 0},
{1, 0, 1, 0, 0},
{1, 1, 0, 0, 0},
{1, 0, 0, 0, 1},
{0, 0, 0, 1, 0}
};
/* int graph[NODE][NODE] = {
{0, 1, 1, 1, 1},
{1, 0, 1, 0, 0},
{1, 1, 0, 0, 0},
{1, 0, 0, 0, 1},
{1, 0, 0, 1, 0}
};
*/ //uncomment to check Euler Circuit
/* int graph[NODE][NODE] = {
{0, 1, 1, 1, 0},
{1, 0, 1, 1, 0},
{1, 1, 0, 0, 0},
{1, 1, 0, 0, 1},
{0, 0, 0, 1, 0}
};
*/ //Uncomment to check Non Eulerian Graph
void traverse(int u, bool visited[]) {
visited[u] = true; //mark v as visited
for(int v = 0; v<NODE; v++) {
if(graph[u][v]) {
if(!visited[v])
traverse(v, visited);
}
}
}
bool isConnected() {
bool *vis = new bool[NODE];
//for all vertex u as start point, check whether all nodes are visible or not
for(int u; u < NODE; u++) {
for(int i = 0; i<NODE; i++)
vis[i] = false; //initialize as no node is visited
traverse(u, vis);
for(int i = 0; i<NODE; i++) {
if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected
return false;
}
}
return true;
}
int isEulerian() {
if(isConnected() == false) //when graph is not connected
return 0;
vector<int> degree(NODE, 0);
int oddDegree = 0;
for(int i = 0; i<NODE; i++) {
for(int j = 0; j<NODE; j++) {
if(graph[i][j])
degree[i]++; //increase degree, when connected edge found
}
if(degree[i] % 2 != 0) //when degree of vertices are odd
oddDegree++; //count odd degree vertices
}
if(oddDegree > 2) //when vertices with odd degree greater than 2
return 0;
return (oddDegree)?1:2; //when oddDegree is 0, it is Euler circuit, and when 2, it is Euler path
}
int main() {
int check;
check = isEulerian();
switch(check) {
case 0: cout << "The graph is not an Eulerian graph.";
break;
case 1: cout << "The graph has an Eulerian path.";
break;
case 2: cout << "The graph has a Eulerian circuit.";
break;
}
}輸出
The graph has an Eulerian path.
廣告
資料結構
網路
關係資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP