C++程式檢查有向圖是否包含尤拉路徑
尤拉路徑是一條路徑,透過它我們可以精確地訪問每條邊一次。我們可以多次使用相同的頂點。包含歐拉回路的圖在這種情況下也被考慮在內,因為它也具有尤拉路徑。
要檢查有向圖是否具有尤拉路徑,我們必須檢查以下條件:
- 必須存在一個唯一的頂點an,其中(入度 + 1 = 出度)
- 必須存在一個唯一的頂點bn,其中(入度 = 出度 + 1)
- 如果任何這些情況失敗,則圖中沒有尤拉路徑,其餘所有頂點都有(入度 = 出度)。
頂點b具有(入度1,出度2),頂點c具有(入度2,出度1)。對於其餘頂點a、d,具有(入度2,出度2),e具有(入度1,出度1)。
輸入
圖的鄰接矩陣。
0 | 0 | 1 | 1 | 0 |
1 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 1 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 |
輸出
找到尤拉路徑。
演算法
traverse(u, visited)
輸入:起始節點u和已訪問節點,以標記哪些節點已被訪問。
輸出:遍歷所有連線的頂點。
Begin mark u as visited for all vertex v, if it is adjacent with u, do if v is not visited, then traverse(v, visited) done End
isConnected(graph)
輸入:圖。
輸出:如果圖是連通的,則返回True。
Begin define visited array for all vertices u in the graph, do make all nodes unvisited traverse(u, visited) if any unvisited node is still remaining, then return false done return true End
hasEulerPath(Graph)
輸入:給定的圖。
輸出:找到一個歐拉回路時返回True。
Begin an := 0 bn := 0 if isConnected() is false, then return false define list for inward and outward edge count for each node for all vertex i in the graph, do sum := 0 for all vertex j which are connected with i, do inward edges for vertex i increased increase sum done number of outward of vertex i is sum done if inward list and outward list are same, then return true for all vertex i in the vertex set V, do if inward[i] ≠ outward[i], then if inward[i] + 1 = outward[i], then an := an + 1 else if inward[i] = outward[i] + 1, then bn := bn + 1 done if an and bn both are 1, then return true otherwise return false End
示例程式碼
#include<iostream> #include<vector> #define NODE 5 using namespace std; int graph[NODE][NODE] = {{0, 0, 1, 1, 0}, {1, 0, 1, 0, 0}, {0, 0, 0, 1, 0}, {0, 1, 0, 0, 1}, {1, 0, 0, 0, 0}}; void traverse(int u, bool visited[]) { visited[u] = true; //mark v as visited for(int v = 0; v<NODE; v++) { if(graph[u][v]) { if(!visited[v]) traverse(v, visited); } } } bool isConnected() { bool *vis = new bool[NODE]; //for all vertex u as start point, check whether all nodes are visible or not for(int u; u < NODE; u++) { for(int i = 0; i<NODE; i++) vis[i] = false; //initialize as no node is visited traverse(u, vis); for(int i = 0; i<NODE; i++) { if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected return false; } } return true; } bool hasEulerPath() { int an = 0, bn = 0; if(isConnected() == false){ //when graph is not connected return false; } vector<int> inward(NODE, 0), outward(NODE, 0); for(int i = 0; i<NODE; i++) { int sum = 0; for(int j = 0; j<NODE; j++) { if(graph[i][j]) { inward[j]++; //increase inward edge for destination vertex sum++; //how many outward edge } } outward[i] = sum; } //check the condition for Euler paths if(inward == outward) //when number inward edges and outward edges for each node is same return true; //Euler Circuit, it has Euler path for(int i = 0; i<NODE; i++) { if(inward[i] != outward[i]) { if((inward[i] + 1 == outward[i])) { an++; } else if((inward[i] == outward[i] + 1)) { bn++; } } } if(an == 1 && bn == 1) { //if there is only an, and bn, then this has euler path return true; } return false; } int main() { if(hasEulerPath()) cout << "Euler Path Found."; else cout << "There is no Euler Circuit."; }
輸出
Euler Path Found.
廣告