C++ 程式,利用 DFS 驗證有向圖的連通性
為了檢查圖表的連通性,我們將嘗試使用任何遍歷演算法來遍歷所有節點。在遍歷完成後,如果有任何未訪問的節點,則表明該圖表是不連通的。

對於有向圖,我們將從所有節點開始遍歷以檢查連通性。有時一個邊可能只有外向邊,但沒有內向邊,因此該節點將從任何其他起始節點開始都是未訪問的。
在這種情況下,遍歷演算法是遞迴 DFS 遍歷。
輸入:圖表的鄰接矩陣
| 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 0 |
輸出:圖表是連通的。
演算法
traverse(u, visited)
輸入:起始節點 u 和已訪問的節點,用於標記已訪問的節點。
輸出:遍歷所有連線的頂點。
Begin
mark u as visited
for all vertex v, if it is adjacent with u, do
if v is not visited, then
traverse(v, visited)
done
EndisConnected(graph)
輸入:圖表。
輸出:如果圖表是連通的,則為 True。
Begin
define visited array
for all vertices u in the graph, do
make all nodes unvisited
traverse(u, visited)
if any unvisited node is still remaining, then
return false
done
return true
End示例程式碼
#include<iostream>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {{0, 1, 0, 0, 0},
{0, 0, 1, 0, 0},
{0, 0, 0, 1, 1},
{1, 0, 0, 0, 0},
{0, 1, 0, 0, 0}};
void traverse(int u, bool visited[]) {
visited[u] = true; //mark v as visited
for(int v = 0; v<NODE; v++) {
if(graph[u][v]) {
if(!visited[v])
traverse(v, visited);
}
}
}
bool isConnected() {
bool *vis = new bool[NODE];
//for all vertex u as start point, check whether all nodes are visible or not
for(int u; u < NODE; u++) {
for(int i = 0; i<NODE; i++)
vis[i] = false; //initialize as no node is visited
traverse(u, vis);
for(int i = 0; i<NODE; i++) {
if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected
return false;
}
}
return true;
}
int main() {
if(isConnected())
cout << "The Graph is connected.";
else
cout << "The Graph is not connected.";
}輸出
The Graph is connected.
廣告
資料結構
網路
RDBMS
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP