使用DFS檢查無向圖連通性的C++程式
要檢查圖的連通性,我們將嘗試使用任何遍歷演算法遍歷所有節點。遍歷完成後,如果存在任何未訪問的節點,則該圖未連線。

對於無向圖,我們將選擇一個節點並從中進行遍歷。
在本例中,遍歷演算法是遞迴深度優先搜尋 (DFS) 遍歷。
輸入 − 圖的鄰接矩陣
| 0 | 1 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 1 | 1 |
| 0 | 1 | 1 | 0 | 1 |
| 0 | 0 | 1 | 1 | 0 |
輸出 − 圖是連通的。
演算法
traverse(u, visited)
輸入 − 起始節點u和已訪問節點,用於標記哪些節點已訪問。
輸出:遍歷所有連線的頂點。
Begin
mark u as visited
for all vertex v, if it is adjacent with u, do
if v is not visited, then
traverse(v, visited)
done
EndisConnected(graph)
輸入 − 圖。
輸出 − 如果圖是連通的,則返回真。
Begin define visited array for all vertices u in the graph, do make all nodes unvisited traverse(u, visited) if any unvisited node is still remaining, then return false done return true End
示例程式碼
#include<iostream>
#define NODE 5
using namespace std;
int graph[NODE][NODE] = {{0, 1, 1, 0, 0},
{1, 0, 1, 1, 0},
{1, 1, 0, 1, 1},
{0, 1, 1, 0, 1},
{0, 0, 1, 1, 0}};
void traverse(int u, bool visited[]) {
visited[u] = true; //mark v as visited
for(int v = 0; v<NODE; v++) {
if(graph[u][v]) {
if(!visited[v])
traverse(v, visited);
}
}
}
bool isConnected() {
bool *vis = new bool[NODE];
//for all vertex u as start point, check whether all nodes are visible or not
for(int u; u < NODE; u++) {
for(int i = 0; i<NODE; i++)
vis[i] = false; //initialize as no node is visited
traverse(u, vis);
for(int i = 0; i<NODE; i++) {
if(!vis[i]) //if there is a node, not visited by traversal, graph is not connected
return false;
}
}
return true;
}
int main() {
if(isConnected())
cout << "The Graph is connected.";
else
cout << "The Graph is not connected.";
}輸出
The Graph is connected.
廣告
資料結構
網路
關係資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP