C++ 程式使用深度優先搜尋針對有向無環圖執行拓撲排序
有向無環圖 (DAG) 的拓撲排序是一種線性的頂點排序,其中對於每個有向邊 uv,其中頂點 u 在排序中在 v 之前。如果該圖不是 DAG,則無法針對該圖進行拓撲排序。
函式和虛擬碼
Begin function topologicalSort(): a) Mark the current node as visited. b) Recur for all the vertices adjacent to this vertex. c) Push current vertex to stack which stores result. End Begin function topoSort() which uses recursive topological sort() function: a) Mark all the vertices which are not visited. b) Call the function topologicalSort(). c) Print the content. End
示例
#include<iostream> #include <list> #include <stack> using namespace std; class G { int n; list<int> *adj; //declaration of functions void topologicalSort(int v, bool visited[], stack<int> &Stack); public: G(int n); //constructor void addEd(int v, int w); void topoSort(); }; G::G(int n) { this->n = n; adj = new list<int> [n]; } void G::addEd(int v, int w) // add the edges to the graph. { adj[v].push_back(w); //add w to v’s list } void G::topologicalSort(int v, bool visited[], stack<int> &Stack) { visited[v] = true; //mark current node as visited list<int>::iterator i; //Recur for all the vertices adjacent to this vertex. for (i = adj[v].begin(); i != adj[v].end(); ++i) if (!visited[*i]) topologicalSort(*i, visited, Stack); Stack.push(v); } void G::topoSort() { stack<int> Stack; bool *visited = new bool[n]; //Mark all the vertices which are not visited. for (int i = 0; i < n; i++) visited[i] = false; for (int i = 0; i < n; i++) if (visited[i] == false) //Call the function topologicalSort(). topologicalSort(i, visited, Stack); while (Stack.empty() == false) { cout << Stack.top() << " "; //print the element Stack.pop(); } } int main() { G g(6); g.addEd(4, 2); g.addEd(5, 1); g.addEd(4, 0); g.addEd(3, 1); g.addEd(1, 3); g.addEd(3, 2); cout << " Topological Sort of the given graph \n"; g.topoSort(); return 0; }
輸出
Topological Sort of the given graph 5 4 1 3 2 0
廣告