解下列方程組
\( \frac{x}{a}+\frac{y}{b}=a+b \)
\( \frac{x}{a^{2}}+\frac{y}{b^{2}}=2, a, b ≠ 0 \)
已知
\( \frac{x}{a}+\frac{y}{b}=a+b \)
\( \frac{x}{a^{2}}+\frac{y}{b^{2}}=2, a, b ≠ 0 \)
要求
我們必須解出給定的線性方程組。
解答
$\frac{x}{a}+\frac{y}{b}=a+b$..........(i)
$\frac{x}{a^{2}}+\frac{y}{b^{2}}=2$.........(ii)
用 $\frac{1}{a}$ 乘以 (i),然後從 (ii) 中減去,我們得到:
$[\frac{x}{a^{2}}+\frac{y}{b^{2}}]-[\frac{x}{a^{2}}+\frac{y}{a b}]=2-(1+\frac{b}{a})$
$y(\frac{1}{b^{2}}-\frac{1}{a b})=2-1-\frac{b}{a}$
$y(\frac{a-b}{a b^{2}})=1-\frac{b}{a}$
$=(\frac{a-b}{a})$
$y=\frac{a b^{2}}{a}$
$y=b^{2}$
這意味著:
$\frac{x}{a^{2}}+\frac{b^{2}}{b^{2}}=2$
$\frac{x}{a^{2}}=2-1$
$\frac{x}{a^{2}}=1$
$x=a^{2}$
因此,x 和 y 的值分別為 $a^{2}$ 和 $b^{2}$。
- 相關文章
- 用交叉相乘法解下列方程組:$\frac{a^2}{x}-\frac{b^2}{y}=0$ $\frac{a^2b}{x}+\frac{b^2a}{y}=a+b, x, y≠0$
- 用交叉相乘法解下列方程組:$\frac{x}{a}\ +\ \frac{y}{b}\ =\ a\ +\ b$ $\frac{x}{a^2}\ +\ \frac{y}{b^2}\ =\ 2$
- 解出 x 和 y:$\frac{x}{a}=\frac{y}{b};\ ax+by=a^{2}+b^{2}$。
- 用交叉相乘法解下列方程組:$\frac{b}{a}x+\frac{a}{b}y=a^2+b^2$ $x+y=2ab$
- 解下列線性方程組:(i) \( p x+q y=p-q \)$q x-p y=p+q$(ii) \( a x+b y=c \)$b x+a y=1+c$,b>(iii) \( \frac{x}{a}-\frac{y}{b}=0 \)$a x+b y=a^{2}+b^{2}$(iv) \( (a-b) x+(a+b) y=a^{2}-2 a b-b^{2} \)$(a+b)(x+y)=a^{2}+b^{2}$(v) \( 152 x-378 y=-74 \)$-378 x+152 y=-604$.
- 解下列方程組:\( \frac{2 x y}{x+y}=\frac{3}{2} \)\( \frac{x y}{2 x-y}=\frac{-3}{10}, x+y ≠ 0,2 x-y ≠ 0 \)
- 如果 $\frac{x}{a}cos\theta+\frac{y}{b}sin\theta=1$ 且 $\frac{x}{a}sin\theta-\frac{y}{b}cos\theta=1$,證明 $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$。
- 將下列代數式相加:(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 解下列方程組:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠ 0 \)
- 用交叉相乘法解下列方程組:$x(a-b+\frac{ab}{a-b})=y(a+b-\frac{ab}{a+b})$ $x+y=2a^2$
- (i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
- 用交叉相乘法解下列方程組:$\frac{x}{a} +\frac{y}{b} = 2$ $ax\ –\ by\ =\ a^2\ -\ b^2$
- 用交叉相乘法解下列方程組:$\frac{x}{a}\ =\ \frac{y}{b}$ $ax\ +\ by\ =\ a^2\ +\ b^2$
- 用因式分解法解下列二次方程:$\frac{a}{x-b}+\frac{b}{x-a}=2, x ≠ a, b$
- 解下列方程組:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$