返回 NumPy 中一維陣列掩碼塊對應的一系列切片
要返回對應於一維陣列掩碼塊的一系列切片,請在 Python NumPy 中使用 **ma.clump_masked()**。 “塊”定義為陣列的連續區域。返回切片列表,每個切片對應於 a 中掩碼元素的一個連續區域。
掩碼陣列是標準 numpy.ndarray 和掩碼的組合。掩碼要麼是 nomask,表示關聯陣列的任何值均有效,要麼是布林陣列,用於確定關聯陣列的每個元素的值是否有效。
步驟
首先,匯入所需的庫 -
import numpy as np import numpy.ma as ma
使用 numpy.array() 方法建立包含整數元素的陣列 -
arr = np.array([65, 68, 81, 93, 33, 39, 62, 45, 67])
print("Array...
", arr)
print("
Array type...
", arr.dtype)獲取陣列的維度 -
print("
Array Dimensions...
",arr.ndim)
建立一個掩碼陣列,並將其中的某些元素標記為無效 -
maskArr = ma.masked_array(arr, mask =[1, 1, 0, 1, 0, 0, 0, 1, 0])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)獲取掩碼陣列的維度 -
print("
Our Masked Array Dimensions...
",maskArr.ndim)
獲取掩碼陣列的形狀 -
print("
Our Masked Array Shape...
",maskArr.shape)獲取掩碼陣列的元素數量 -
print("
Elements in the Masked Array...
",maskArr.size)
返回一個布林值,指示資料是否連續 -
print("
Check whether the data is contiguous?
",maskArr.iscontiguous())要返回對應於一維陣列掩碼塊的一系列切片,請使用 ma.clump_masked()。 “塊”定義為陣列的連續區域
print("
Result...
",np.ma.clump_masked(maskArr))
示例
import numpy as np
import numpy.ma as ma
# Create an array with int elements using the numpy.array() method
arr = np.array([65, 68, 81, 93, 33, 39, 62, 45, 67])
print("Array...
", arr)
print("
Array type...
", arr.dtype)
# Get the dimensions of the Array
print("
Array Dimensions...
",arr.ndim)
# Create a masked array and mask some of them as invalid
maskArr = ma.masked_array(arr, mask =[1, 1, 0, 1, 0, 0, 0, 1, 0])
print("
Our Masked Array
", maskArr)
print("
Our Masked Array type...
", maskArr.dtype)
# Get the dimensions of the Masked Array
print("
Our Masked Array Dimensions...
",maskArr.ndim)
# Get the shape of the Masked Array
print("
Our Masked Array Shape...
",maskArr.shape)
# Get the number of elements of the Masked Array
print("
Elements in the Masked Array...
",maskArr.size)
# Return a boolean indicating whether the data is contiguous
print("
Check whether the data is contiguous?
",maskArr.iscontiguous())
# To return a list of slices corresponding to the masked clumps of a 1-D array, use the ma.clump_masked() in Python Numpy
# A “clump” is defined as a contiguous region of the array.
print("
Result...
",np.ma.clump_masked(maskArr))輸出
Array... [65 68 81 93 33 39 62 45 67] Array type... int64 Array Dimensions... 1 Our Masked Array [-- -- 81 -- 33 39 62 -- 67] Our Masked Array type... int64 Our Masked Array Dimensions... 1 Our Masked Array Shape... (9,) Elements in the Masked Array... 9 Check whether the data is contiguous? True Result... [slice(0, 2, None), slice(3, 4, None), slice(7, 8, None)]
廣告
資料結構
網路
關係型資料庫管理系統
作業系統
Java
iOS
HTML
CSS
Android
Python
C 語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP