利用因式定理判斷下列每種情況下 \( g(x) \) 是否為 \( p(x) \) 的因式
(i) \( p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1 \)
(ii) \( p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2 \)
(iii) \( p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3 \)
解題步驟
我們需要判斷在每種給定情況下,多項式 $g(x)$ 是否為多項式 $p(x)$ 的因式。
解答
我們知道,如果 $g(x)$ 是 $p(x)$ 的因式,則餘數將為零。
(i) \( p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1=x-(-1) \)
因此,餘數將為 $p(-1)$。
$p(-1) = 2 (-1)^{3}+(-1)^{2}-2 (-1)-1 = 0$
$= 2(-1)+1 +2-1$
$=-2+3-1$
$=0$
因此,$g(x)$ 是多項式 $p(x)$ 的因式。
(ii) \( p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2=x-(-2) \)
因此,餘數將為 $p(-2)$。
$p(-2) = (-2)^{3}+3 (-2)^{2}+3 (-2)+1 = -8 + 12 -6 + 1 = -1$
$= -8+3(4)-6+1$
$=-14+12+1$
$=-14+13$
$=-1$
$≠ 0$
因此,$g(x)$ 不是多項式 $p(x)$ 的因式。
(iii) \( p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3 \)
因此,餘數將為 $p(3)$。
$p(3) =(3)^{3}-4 (3)^{2}+(3)+6 = 27 - 36 + 3 + 6 = 0$
$= 27-4(9) +3+6$
$=36-36$
$=0$
因此,$g(x)$ 是多項式 $p(x)$ 的因式。
- 相關文章
- 將多項式 $p(x)$ 除以多項式 $g(x)$,並找出下列每種情況下的商和餘數:(i) $p(x) = x^3 - 3x^2 + 5x -3, g(x) = x^2-2$(ii) $p(x) =x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 -x$(iii) $p(x) = x^4 - 5x + 6, g(x) = 2 -x^2$
- 確定下列哪些多項式具有因式\( (x+1) \):(i) \( x^{3}+x^{2}+x+1 \)(ii) \( x^{4}+x^{3}+x^{2}+x+1 \)(iii) \( x^{4}+3 x^{3}+3 x^{2}+x+1 \)(iv) \( x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2} \)
- 驗證下列值是否為其對應多項式的零點。(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- 檢查下列哪些是二次方程:(i) \( (x+1)^{2}=2(x-3) \)(ii) \( x^{2}-2 x=(-2)(3-x) \)(iii) \( (x-2)(x+1)=(x-1)(x+3) \)(iv) \( (x-3)(2 x+1)=x(x+5) \)(v) \( (2 x-1)(x-3)=(x+5)(x-1) \)(vi) \( x^{2}+3 x+1=(x-2)^{2} \)(vii) \( (x+2)^{3}=2 x\left(x^{2}-1\right) \)(viii) \( x^{3}-4 x^{2}-x+1=(x-2)^{3} \)
- 如果 \( x-1 \) 是下列每種情況下 \( p(x) \) 的因式,則求 \( k \) 的值:(i) \( p(x)=x^{2}+x+k \)(ii) \( p(x)=2 x^{2}+k x+\sqrt{2} \)(iii) \( p(x)=k x^{2}-\sqrt{2} x+1 \)(iv) \( p(x)=k x^{2}-3 x+k \)
- 將多項式 $p( x)$ 除以多項式 $g( x)$,並找出下列每種情況下的商和餘數:$( p(x)=x^{3}-3 x^{2}+5 x-3$, $g(x)=x^{2}-2$.
- 確定下列哪些多項式具有因式\( (x+1) \):(i) \( x^{3}+x^{2}+x+1 \)(ii) \( x^{4}+x^{3}+x^{2}+x+1 \)
- 確定下列哪些是多項式:\( g(x)=2 x^{3}-3 x^{2}+\sqrt{x}-1 \)
- 利用餘數定理,求 $f( x)$ 除以 $g( x)$ 的餘數:$f( x)=4 x^{3}-12 x^{2}+11 x-3,\ g( x)=x+\frac{1}{2}$。
- 因式分解:(i) \( 12 x^{2}-7 x+1 \)(ii) \( 2 x^{2}+7 x+3 \)(iii) \( 6 x^{2}+5 x-6 \)(iv) \( 3 x^{2}-x-4 \)
- 化簡下列式子:$( 3 x^2 + 5 x - 7 ) (x-1) - ( x^2 - 2 x + 3 ) (x + 4)$
- 化簡下列每個乘積:\( (x^{3}-3 x^{2}-x)(x^{2}-3 x+1) \)
- 因式分解:(i) \( x^{3}-2 x^{2}-x+2 \)(ii) \( x^{3}-3 x^{2}-9 x-5 \)(iii) \( x^{3}+13 x^{2}+32 x+20 \)(iv) \( 2 y^{3}+y^{2}-2 y-1 \)
- 在下列每種情況下,求多項式的零點:(i) \( p(x)=x+5 \)(ii) \( p(x)=x-5 \)(iii) \( p(x)=2 x+5 \)(iv) \( p(x)=3 x-2 \)(v) \( p(x)=3 x \)(vi) \( p(x)=a x, a ≠ 0 \)(vii) \( p(x)=c x+d, c ≠ 0, c, d \) 為實數。
- 求下列每個多項式的 \( p(0), p(1) \) 和 \( p(2) \) 的值:(i) \( p(y)=y^{2}-y+1 \)(ii) \( p(t)=2+t+2 t^{2}-t^{3} \)(iii) \( p(x)=x^{3} \)(iv) \( p(x)=(x-1)(x+1) \)