"\n">

在給定的三角形 PQR 中,求角∠PRQ 和∠PQR。"\n


已知:在三角形 PQR 中,∠QRS = 125°;∠QPR = 65°

求解:我們需要求出∠PRQ 和∠PQR。


∠PRQ 和∠QRS 構成一個線性對,因為它們是 R 點的內角和外角

∠PRQ + ∠QRS = 180°

∠PRQ + 125° = 180°;所以∠PRQ = 180° - 125° = 55°

根據三角形 PQR 的內角和性質。

∠PRQ + ∠PQR + ∠QPR = 180°;55° + ∠PQR + 65° = 180°;

∠PQR = 180° - 120° = 60°


所以∠PRQ = 55° 和∠PQR = 60°

更新於: 2022年10月10日

56 次瀏覽

開啟你的職業生涯

透過完成課程獲得認證

立即開始
廣告
© . All rights reserved.