因式分解下列表達式:\( 3 \sqrt{3} a^{3}-b^{3}-5 \sqrt{5} c^{3}-3 \sqrt{15} a b c \)


已知

\( 3 \sqrt{3} a^{3}-b^{3}-5 \sqrt{5} c^{3}-3 \sqrt{15} a b c \)

要求

我們需要對給定的表示式進行因式分解。

解答

我們知道:

$a^3 + b^3 + c^3 - 3abc = (a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)$

如果 $a + b + c = 0$,則 $a^3 + b^3 + c^3 = 3abc$

因此:

$3 \sqrt{3} a^{3}-b^{3}-5 \sqrt{5} c^{3}-3 \sqrt{15} a b c = (\sqrt{3} a)^{3}+(-b)^{3}+(-\sqrt{5} c)^{3}-3 \sqrt{3} a \times(-b) \times(-\sqrt{5} c)$

$=(\sqrt{3} a-b-\sqrt{5} c)[(\sqrt{3} a)^{2}+(-b)^{2}+(-\sqrt{5} c)^{2}-\sqrt{3} a \times(-b)-(-b)(-\sqrt{5} c)-(-\sqrt{5} c) \times \sqrt{3} a$

$=(\sqrt{3} a-b-\sqrt{5} c)(3 a^{2}+b^{2}+5 c^{2}+\sqrt{3} a b-\sqrt{5} b c+\sqrt{15} c a)$

因此,$3 \sqrt{3} a^{3}-b^{3}-5 \sqrt{5} c^{3}-3 \sqrt{15} a b c = (\sqrt{3} a-b-\sqrt{5} c)(3 a^{2}+b^{2}+5 c^{2}+\sqrt{3} a b-\sqrt{5} b c+\sqrt{15} c a)$。

更新於: 2022年10月10日

88 次瀏覽

啟動你的職業生涯

完成課程獲得認證

開始學習
廣告