LightGBM - 早停訓練



早停訓練是一種方法,如果評估資料集上評估的評估指標在特定次數的迴圈後沒有改善,我們就會停止訓練。Lightgbm 的類似 sklearn 的估計器在 train() 和 fit() 方法中都有一個名為 early_stopping_rounds 的引數。此引數接受一個整數值,表示如果評估指標結果在一定輪數後沒有改善,則應停止訓練過程。

此引數接受一個整數值,表示如果評估指標結果在幾輪後沒有改善,則應終止訓練過程。

因此請記住,這需要一個評估資料集才能工作,因為它依賴於針對評估資料集評估的評估指標結果。

示例

在載入波士頓房價資料集之前,我們將首先匯入必要的庫。從 1.2 版本開始,Scikit-Learn 中不再提供此資料集,因此我們將使用 sklearn.datasets.load_boston() 複製該特徵。

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(boston.data, boston.target)

print("Sizes of Train or Test Datasets : ", X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)

train_dataset = lgb.Dataset(X_train, Y_train, feature_name=boston.feature_names.tolist())
test_dataset = lgb.Dataset(X_test, Y_test, feature_name=boston.feature_names.tolist())

booster = lgb.train({"objective": "regression", "verbosity": -1, "metric": "rmse"},
                    train_set=train_dataset, valid_sets=(test_dataset,),
                    early_stopping_rounds=5,
                    num_boost_round=100)

from sklearn.metrics import r2_score

test_preds = booster.predict(X_test)
train_preds = booster.predict(X_train)

# Display the R2 scores in the console
print("\nR2 Score on Test Set : %.2f"%r2_score(Y_test, test_preds))
print("R2 Score on Train Set : %.2f"%r2_score(Y_train, train_preds))

輸出

這將產生以下結果

Sizes of Train or Test Datasets:  (404, 13) (102, 13) (404,) (102,)
[1]	valid_0's rmse: 9.10722
Training until validation scores don't improve for 5 rounds
[2]	valid_0's rmse: 8.46389
[3]	valid_0's rmse: 7.93394
[4]	valid_0's rmse: 7.43812
[5]	valid_0's rmse: 7.01845
[6]	valid_0's rmse: 6.68186
[7]	valid_0's rmse: 6.43834
[8]	valid_0's rmse: 6.17357
[9]	valid_0's rmse: 5.96725
[10]	valid_0's rmse: 5.74169
[11]	valid_0's rmse: 5.55389
[12]	valid_0's rmse: 5.38595
[13]	valid_0's rmse: 5.24832
[14]	valid_0's rmse: 5.13373
[15]	valid_0's rmse: 5.0457
[16]	valid_0's rmse: 4.96688
[17]	valid_0's rmse: 4.87874
[18]	valid_0's rmse: 4.8246
[19]	valid_0's rmse: 4.75342
[20]	valid_0's rmse: 4.69854
Did not meet early stopping. Best iteration is:
[20]	valid_0's rmse: 4.69854

R2 Score on Test Set: 0.81
R2 Score on Train Set: 0.97

此程式將乳腺癌資料集分成兩個部分,如訓練和測試。它訓練一個 LightGBM 模型來判斷腫瘤是危險的還是無害的,因此如果效能沒有改善,則提前停止。最後,它預測測試集和訓練集的結果,並計算模型的準確率。

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(breast_cancer.data, breast_cancer.target)

print("Sizes of Train or Test Datasets : ", X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)

booster = lgb.LGBMModel(objective="binary", n_estimators=100, metric="auc")

booster.fit(X_train, Y_train,
            eval_set=[(X_test, Y_test),],
            early_stopping_rounds=3)

from sklearn.metrics import accuracy_score

test_preds = booster.predict(X_test)
train_preds = booster.predict(X_train)

test_preds = [1 if pred > 0.5 else 0 for pred in test_preds]
train_preds = [1 if pred > 0.5 else 0 for pred in train_preds]

# Display the accuracy results
print("\nAccuracy Score on Test Set : %.2f"%accuracy_score(Y_test, test_preds))
print("Accuracy Score on Train Set : %.2f"%accuracy_score(Y_train, train_preds))

輸出

這將導致以下結果

Sizes of Train or Test Datasets :  (426, 30) (143, 30) (426,) (143,)
[1]	valid_0's auc: 0.986129
Training until validation scores don't improve for 3 rounds
[2]	valid_0's auc: 0.989355
[3]	valid_0's auc: 0.988925
[4]	valid_0's auc: 0.987097
[5]	valid_0's auc: 0.990108
[6]	valid_0's auc: 0.993011
[7]	valid_0's auc: 0.993011
[8]	valid_0's auc: 0.993441
[9]	valid_0's auc: 0.993441
[10]	valid_0's auc: 0.994194
[11]	valid_0's auc: 0.994194
[12]	valid_0's auc: 0.994194
[13]	valid_0's auc: 0.994409
[14]	valid_0's auc: 0.995914
[15]	valid_0's auc: 0.996129
[16]	valid_0's auc: 0.996989
[17]	valid_0's auc: 0.996989
[18]	valid_0's auc: 0.996344
[19]	valid_0's auc: 0.997204
[20]	valid_0's auc: 0.997419
[21]	valid_0's auc: 0.997849
[22]	valid_0's auc: 0.998065
[23]	valid_0's auc: 0.997849
[24]	valid_0's auc: 0.998065
[25]	valid_0's auc: 0.997634
Early stopping, best iteration is:
[22]	valid_0's auc: 0.998065

Accuracy Score on Test Set : 0.97
Accuracy Score on Train Set : 0.98

如何透過“early_stopping()”回撥提前停止訓練?

LightGBM 實際上支援使用 early_stopping() 回撥機制進行早停訓練。我們可以將 early_stopping() 函式的輪數作為回撥引數傳遞給 train()/fit() 方法。回撥的使用如下所示:

from sklearn.model_selection import train_test_split

X_train, X_test, Y_train, Y_test = train_test_split(breast_cancer.data, breast_cancer.target)

print("Sizes of Train or Test Datasets : ", X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)

booster = lgb.LGBMModel(objective="binary", n_estimators=100, metric="auc")

booster.fit(X_train, Y_train,
            eval_set=[(X_test, Y_test),],
            callbacks=[lgb.early_stopping(3)]
            )

from sklearn.metrics import accuracy_score

test_preds = booster.predict(X_test)
train_preds = booster.predict(X_train)

test_preds = [1 if pred > 0.5 else 0 for pred in test_preds]
train_preds = [1 if pred > 0.5 else 0 for pred in train_preds]

print("\nAccuracy Score on Test Set : %.2f"%accuracy_score(Y_test, test_preds))
print("Accuracy Score on Train Set : %.2f"%accuracy_score(Y_train, train_preds))

輸出

這將生成以下結果

Sizes of Train or Test Datasets :  (426, 30) (143, 30) (426,) (143,)
[1]	valid_0's auc: 0.954328
Training until validation scores don't improve for 3 rounds
[2]	valid_0's auc: 0.959322
[3]	valid_0's auc: 0.982938
[4]	valid_0's auc: 0.988244
[5]	valid_0's auc: 0.987203
[6]	valid_0's auc: 0.98762
[7]	valid_0's auc: 0.98814
Early stopping, best iteration is:
[4]	valid_0's auc: 0.988244

Accuracy Score on Test Set : 0.94
Accuracy Score on Train Set : 0.95
廣告

© . All rights reserved.