返回一個掩碼陣列,包含相同的資料,但形狀在NumPy中被視為行主序


要返回一個包含相同資料但具有新形狀的掩碼陣列,請在NumPy中使用**ma.MaskedArray.reshape()**方法。賦予陣列一個新形狀而不改變其資料。“**order**”引數設定順序。“C”順序決定陣列資料是否應按C語言(行主序)的方式檢視。

新形狀應該與原始形狀相容。如果提供一個整數,則結果將是一個具有該長度的一維陣列。

order引數決定陣列資料是按C語言(行主序)還是FORTRAN(列主序)順序檢視。返回一個包含相同資料但具有新形狀的掩碼陣列。結果是對原始陣列的檢視;如果無法實現,則會引發ValueError。

步驟

首先,匯入所需的庫:

import numpy as np
import numpy.ma as ma

使用numpy.array()方法建立一個包含整數元素的陣列:

arr = np.array([[49, 85, 45], [67, 33, 59]])
print("Array...
", arr) print("
Array type...
", arr.dtype)

獲取陣列的維度:

print("Array Dimensions...
",arr.ndim)

建立一個掩碼陣列,並將其中一些標記為無效:

maskArr = ma.masked_array(arr, mask =[[0, 0, 1], [ 0, 1, 0]])
print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)

獲取掩碼陣列的維度:

print("
Our Masked Array Dimensions...
",maskArr.ndim)

獲取掩碼陣列的形狀:

print("
Our Masked Array Shape...
",maskArr.shape)

獲取掩碼陣列的元素個數:

print("
Elements in the Masked Array...
",maskArr.size)

要返回一個包含相同資料但具有新形狀的掩碼陣列,請使用ma.MaskedArray.reshape()。順序由“order”引數設定。“C”順序決定陣列資料是否應按C語言(行主序)的方式檢視:

print("
Result...
",maskArr.reshape((6,1),order='C'))

示例

# Python ma.MaskedArray - Return a masked array containing the same data but with a new shape
# viewed as row-major order

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[78, 85, 51], [56, 33, 97]])
print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid # The masked array is 1x6 maskArr = ma.masked_array(arr, mask =[[0, 1, 0, 0, 0, 1]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To return a masked array containing the same data, but with a new shape, use the ma.MaskedArray.reshape() method in Numpy # Give a new shape to the array without changing its data # The new shape of the masked array is set to 6x1 as a parameter # The new shape should be compatible with the original shape. # If an integer is supplied, then the result will be a 1-D array of that length # The order is set using the "order" parameter # The 'C' order determines whether the array data should be viewed as in C (row-major) print("
Result...
",maskArr.reshape((6,1),order='C'))

輸出

Array...
[[78 85 51]
[56 33 97]]

Array type...
int64

Array Dimensions...
2

Our Masked Array
[[78 -- 51]
[56 33 --]]

Our Masked Array type...
int64

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(2, 3)

Elements in the Masked Array...
6

Result...
[[78]
[--]
[51]
[56]
[33]
[--]]

更新於:2022年2月4日

瀏覽量:102

啟動你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.