從下列分數中選出四個相等的分數
$\frac{1}{2}, \frac{3}{6}, \frac{5}{6}, \frac{8}{17}, \frac{2}{4}, \frac{111}{222}, \frac{2}{3}$
已知
給定的分數是 $\frac{1}{2}, \frac{3}{6}, \frac{5}{6}, \frac{8}{17}, \frac{2}{4}, \frac{111}{222}, \frac{2}{3}$。
需要做的事情
我們必須從這些分數中找到相等的分數。
解答
相等的分數:
相等的分數 是指分子和分母不同的分數,但它們的值相等。
從給定的選項中,
$\frac{1}{2}=\frac{1}{2}$
$\frac{3}{6}=\frac{1}{2}$
$\frac{5}{6}=\frac{5}{6}$
$\frac{8}{17}=\frac{8}{17}$
$\frac{2}{4}=\frac{1}{2}$
$\frac{111}{222}=\frac{1}{2}$
$\frac{2}{3}=\frac{2}{3}$
因此,從這些分數中選出的四個相等的分數是 $\frac{1}{2}, \frac{3}{6}, \frac{2}{4}, \frac{111}{222}$。
- 相關文章
- 解:(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- 化簡:(i) \( \frac{-3}{2}+\frac{5}{4}-\frac{7}{4} \)(ii) \( \frac{5}{3}-\frac{7}{6}+\frac{-2}{3} \)(iii) \( \frac{5}{4}-\frac{7}{6}-\frac{-2}{3} \)(iv) \( \frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7} \)(v) \( \frac{5}{6}+\frac{-2}{5}-\frac{-2}{15} \)(vi) \( \frac{3}{8}-\frac{-2}{9}+\frac{-5}{36} \)
- 從 \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+\frac{3}{5} x+\frac{1}{4} \) 中減去 \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \)
- 減去:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) 從 \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) 從 \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) 從 \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) 從 \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) 從 \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
- 在以下等式中使用了什麼性質?$[\frac{2}{3}+(\frac{-4}{5})]+\frac{1}{6}=\frac{2}{3}+[(\frac{-4}{5})+\frac{1}{6}]$
- 在以下每個模式中再寫四個有理數:(i). $\frac{-3}{5},\ \frac{-6}{10},\ \frac{-9}{15},\ \frac{-12}{20}$........(ii). $\frac{-1}{4},\ \frac{-2}{8},\ \frac{-3}{12}$.....(iii). $\frac{-1}{6},\ \frac{2}{-12},\ \frac{3}{-18},\ \frac{4}{-24}$......(iv). $\frac{-2}{3},\ \frac{2}{-3},\ \frac{4}{-6},\ \frac{6}{-9}$.....
- 計算下列分數的乘積:(i) $\frac{2}{5}\times5\frac{1}{4}$(ii) $6\frac{2}{5}\times\frac{7}{9}$(iii) $\frac{3}{2}\times5\frac{1}{3}$(iv) $\frac{5}{6}\times2\frac{3}{7}$(v) $3\frac{2}{5}\times\frac{4}{7}$(vi) $2\frac{3}{5}\times3$(vii) $3\frac{4}{7}\times\frac{3}{5}$
- 計算: $-\frac{2}{3}\ \times\ \frac{3}{5}\ +\ \frac{5}{2}\ -\ \frac{3}{5}\ \times\ \frac{1}{6}$
- 化簡:$\frac{-2}{3}\times\frac{3}{5}+\frac{5}{2}-\frac{3}{5}\times\frac{1}{6}$。
- 計算:(i) $3-\frac{2}{5}$(ii) $4+\frac{7}{8}$(iii) $\frac{3}{5}+\frac{2}{7}$(iv) $\frac{9}{11}-\frac{4}{15}$(v) $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$(vi) $2\frac{2}{3}+3\frac{1}{2}$(vii) $8\frac{1}{2}-3\frac{5}{8}$
- 觀察圖形,在給定的分數對之間寫上 's' 或 ' \( > \) ', '- '。(a) \( \frac{1}{6} \square \frac{1}{3} \)(b) \( \frac{3}{4} \square \frac{2}{6} \)(c) \( \frac{2}{3} \square \frac{2}{4} \)(d) \( \frac{6}{6} \square \frac{3}{3} \)(e) \( \frac{5}{6} \square \frac{5}{5} \)"
- 在以下每一組中,哪個分數更大:(i). $\frac{2}{3},\ \frac{5}{2}$(ii). $-\frac{5}{6},\ -\frac{4}{3}$(iii). $-\frac{3}{4},\ \frac{2}{-3}$(iv). $-\frac{1}{4},\ \frac{1}{4}$(v). $-3\frac{2}{7\ },\ -3\frac{4}{5}$
- 化簡以下算式:\( 8 \frac{3}{5}-\left(6 \frac{1}{2}-4 \frac{1}{4}-3 \frac{3}{4}\right) \)
- 使用適當的性質求解。(i) \( -\frac{2}{3} \times \frac{3}{5}+\frac{5}{2}-\frac{3}{5} \times \frac{1}{6} \)(ii) \( \frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5} \).
- 計算以下算式:$\frac{-2}{3} \times \frac{3}{5} + \frac{5}{2} - \frac{3}{5} \times \frac{1}{6}$