C++二叉樹邊界
假設我們有一個二叉樹,我們需要找到其邊界值,方向為逆時針方向,從根節點開始。邊界包括左邊界、葉子節點和右邊界,按順序排列,不包含重複節點。
左邊界是從根節點到最左節點的路徑。
右邊界是從根節點到最右節點的路徑。
當根節點沒有左子樹或右子樹時,根節點本身就是左邊界或右邊界。
所以,如果輸入如下:

那麼輸出將是 [1,2,4,7,8,9,10,6,3]
為了解決這個問題,我們將遵循以下步驟:
定義一個數組 ret
定義一個函式 leftBoundary(),它將接收一個節點作為引數:
如果節點為空或節點是葉子節點,則:
返回
將節點的值插入 ret 中
如果節點的左子節點存在,則:
leftBoundary(節點的左子節點)
否則
leftBoundary(節點的右子節點)
定義一個函式 rightBoundary(),它將接收一個節點作為引數:
如果節點為空或節點是葉子節點,則:
返回
將節點的值插入 ret 中
如果節點的右子節點存在,則:
rightBoundary(節點的左子節點)
否則
rightBoundary(節點的右子節點)
定義一個函式 leaves(),它將接收一個節點作為引數:
如果節點不存在,則返回
返回
如果節點是葉子節點,則:
將節點的值插入 ret 中
leaves(節點的左子節點)
leaves(節點的右子節點)
在主方法中執行以下操作:
清空 ret 陣列
如果根節點不存在,則:
返回 ret
將根節點的值插入 ret 中
leftBoundary(根節點的左子節點)
leaves(根節點的左子節點);
leaves(根節點的右子節點);
rightBoundary(根節點的右子節點)
返回 ret
示例
讓我們看看下面的實現,以便更好地理解:
#include <bits/stdc++.h>
using namespace std;
void print_vector(vector<auto> v){
cout << "[";
for(int i = 0; i<v.size(); i++){
cout << v[i] << ", ";
}
cout << "]"<<endl;
}
class TreeNode{
public:
int val;
TreeNode *left, *right;
TreeNode(int data){
val = data;
left = NULL;
right = NULL;
}
};
void insert(TreeNode **root, int val){
queue<TreeNode*> q;
q.push(*root);
while(q.size()){
TreeNode *temp = q.front();
q.pop();
if(!temp->left){
if(val != NULL)
temp->left = new TreeNode(val);
else
temp->left = new TreeNode(0);
return;
}else{
q.push(temp->left);
}
if(!temp->right){
if(val != NULL)
temp->right = new TreeNode(val);
else
temp->right = new TreeNode(0);
return;
}else{
q.push(temp->right);
}
}
}
TreeNode *make_tree(vector<int> v){
TreeNode *root = new TreeNode(v[0]);
for(int i = 1; i<v.size(); i++){
insert(&root, v[i]);
}
return root;
}
class Solution {
public:
vector<int> ret;
void leftBoundary(TreeNode* node){
if (!node || node->val == 0 || (!node->left && !node->right))
return;
ret.push_back(node->val);
if (node->left && node->left->val != 0)
leftBoundary(node->left);
else
leftBoundary(node->right);
}
void rightBoundary(TreeNode* node){
if (!node || node->val == 0 || (!node->left && !node->right))
return;
if (node->right && node->right->val != 0) {
rightBoundary(node->right);
}
else {
rightBoundary(node->left);
}
ret.push_back(node->val);
}
void leaves(TreeNode* node){
if (!node || node->val == 0)
return;
if (!node->left && !node->right) {
ret.push_back(node->val);
}
leaves(node->left);
leaves(node->right);
}
vector<int> boundaryOfBinaryTree(TreeNode* root){
ret.clear();
if (!root)
return ret;
ret.push_back(root->val);
leftBoundary(root->left);
leaves(root->left);
leaves(root->right);
rightBoundary(root->right);
return ret;
}
};
main(){
Solution ob;
vector<int> v = {1,2,3,4,5,6,NULL,NULL,NULL,7,8,9,10};
TreeNode *root = make_tree(v);
print_vector(ob.boundaryOfBinaryTree(root));
}輸入
{1,2,3,4,5,6,NULL,NULL,NULL,7,8,9,10}輸出
[1, 2, 4, 7, 8, 9, 10, 6, 3, ]
廣告
資料結構
網路
關係資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C語言程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP