簡化:$\frac{6-4 \sqrt{2}}{6+4 \sqrt{2}}$。
已知:$\frac{6-4 \sqrt{2}}{6+4 \sqrt{2}}$。
要求:簡化 $\frac{6-4 \sqrt{2}}{6+4 \sqrt{2}}$。
解答
$\frac{6-4 \sqrt{2}}{6+4 \sqrt{2}}$
在分子和分母上同時乘以 $( 6-4\sqrt{2})$
$=\frac{6-4 \sqrt{2}}{6+4 \sqrt{2}}\times\frac{6-4 \sqrt{2}}{6-4 \sqrt{2}}$
$=\frac{( 6-4 \sqrt{2})^2}{6^2-( 4\sqrt{2})^2}$ [$\because ( a-b)( a-b)=( a-b)^2$ 且 $( a-b)( a+b)=a^2-b^2$]
$=\frac{6^2-2\times6\times4\sqrt{2}+( 4\sqrt{2})^2}{36-4\times4\times2}$
$=\frac{36-48\sqrt{2}+32}{36-32}$
$=\frac{68-48\sqrt{2}}{4}$
$=\frac{4( 17-12\sqrt{2})}{4}$
$=17-12\sqrt{2}$
廣告