證明:\( \cot ^{2} A \operatorname{cosec}^{2} B-\cot ^{2} B \operatorname{cosec}^{2} A=\cot ^{2} A-\cot ^{2} B \)


待辦事項

我們需要證明\( \cot ^{2} A \operatorname{cosec}^{2} B-\cot ^{2} B \operatorname{cosec}^{2} A=\cot ^{2} A-\cot ^{2} B \)。

解答

我們知道,

$\sin^2 A+\cos^2 A=1$

$\operatorname{cosec}^2 A-\cot^2 A=1$

$\sec^2 A-\tan^2 A=1$

$\cot A=\frac{\cos A}{\sin A}$

$\tan A=\frac{\sin A}{\cos A}$

$\operatorname{cosec} A=\frac{1}{\sin A}$

$\sec A=\frac{1}{\cos A}$

因此,

讓我們考慮 LHS,

$\cot ^{2} \mathrm{~A} \operatorname{cosec}^{2} \mathrm{~B}-\cot ^{2} \mathrm{~B} \operatorname{cosec}^{2} \mathrm{~A}=\frac{\cos ^{2} \mathrm{~A}}{\sin ^{2} \mathrm{~A}} \times \frac{1}{\sin ^{2} \mathrm{~B}}-\frac{\cos ^{2} \mathrm{~B}}{\sin ^{2} \mathrm{~B}} \times \frac{1}{\sin ^{2} \mathrm{~A}}$

$=\frac{\cos ^{2} \mathrm{~A}}{\sin ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}}-\frac{\cos ^{2} \mathrm{~B}}{\sin ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}}$

$=\frac{\cos ^{2} \mathrm{~A}-\cos ^{2} \mathrm{~B}}{\sin ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}}$

讓我們考慮 RHS,
$\cot ^{2} \mathrm{~A}-\cot ^{2} \mathrm{~B}=\frac{\cos ^{2} \mathrm{~A}}{\sin ^{2} \mathrm{~A}}-\frac{\cos ^{2} \mathrm{~B}}{\sin ^{2} \mathrm{~B}}$

$=\frac{\cos ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}-\sin ^{2} \mathrm{~A} \cos ^{2} \mathrm{~B}}{\sin ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}}$

$=\frac{\cos ^{2} \mathrm{~A}\left(1-\cos ^{2} \mathrm{~B}\right)-\left(1-\cos ^{2} \mathrm{~A}\right) \cos ^{2} \mathrm{~B}}{\sin ^{2} \mathrm{~A} \sin ^{2} \mathrm{~B}}$

$=\frac{\cos ^{2} A-\cos ^{2} A \cos ^{2} B-\cos ^{2} B+\cos ^{2} A \cos ^{2} B}{\sin ^{2} A \sin ^{2} B}$

$=\frac{\cos ^{2} A-\cos ^{2} B}{\sin ^{2} A \sin ^{2} B}$

這裡,

LHS = RHS

因此得證。       

更新於: 2022年10月10日

51 次瀏覽

開啟您的 職業生涯

透過完成課程獲得認證

立即開始
廣告

© . All rights reserved.