如果 $(\frac{3}{5})^{4}$ $\times$ $(\frac{15}{10})^{4}$=$(\frac{x}{y})^{4}$,求 $\frac{x}{y}$ 的值。
解答
$(\frac{3}{5})^{4}$ $\times$ $(\frac{15}{10})^{4}$=$(\frac{x}{y})^{4}$
$a^4\times b^4 = (ab)^4$
$(\frac{3}{5})^{4}$ $\times$ $(\frac{15}{10})^{4}$ = $(\frac{3}{5} \times \frac{15}{10})^4 $
$(\frac{3}{5})^{4}$ $\times$ $(\frac{15}{10})^{4}$ = $(\frac{9}{10})^4$ [$5 \times 3 = 15 ; 3 \times 3 = 9$]
$(\frac{9}{10})^4$ = $(\frac{x}{y})^{4}$
冪相等,因此可以約去。
$\frac{9}{10} = \frac{x}{ y}$
$\frac{x}{ y} = \frac{9}{10}$
因此,$\frac{x}{y} = \frac{9}{10}$
- 相關文章
- 求 $(x +y) \div (x - y)$ 的值,如果:(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
- 解下列方程組:\( \frac{x}{3}+\frac{y}{4}=4 \)\( \frac{5 x}{6}-\frac{y}{8}=4 \)
- 驗證等式:$x \times(y + z) = x \times y + x \times z$,取值如下:(i) \( x=\frac{-3}{7}, y=\frac{12}{13}, z=\frac{-5}{6} \)(ii) \( x=\frac{-12}{5}, y=\frac{-15}{4}, z=\frac{8}{3} \)(iii) \( x=\frac{-8}{3}, y=\frac{5}{6}, z=\frac{-13}{12} \)(iv) \( x=\frac{-3}{4}, y=\frac{-5}{2}, z=\frac{7}{6} \)
- 透過化簡為線性方程組來解下列方程組:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \)(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 驗證等式:$x \times (y \times z) = (x \times y) \times z$,取值如下:(i) \( x=\frac{-7}{3}, y=\frac{12}{5}, z=\frac{4}{9} \)(ii) \( x=0, y=\frac{-3}{5}, z=\frac{-9}{4} \)(iii) \( x=\frac{1}{2}, y=\frac{5}{-4}, z=\frac{-7}{5} \)(iv) \( x=\frac{5}{7}, y=\frac{-12}{13}, z=\frac{-7}{18} \)
- 解下列方程組:$\frac{10}{x+y} +\frac{2}{x-y}=4$$\frac{15}{x+y}-\frac{9}{x-y}=-2$
- \( \left(\frac{x}{2}+\frac{3 y}{4}\right)\left(\frac{x}{2}+\frac{3 y}{4}\right) \)
- 化簡:\( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+\frac{1}{2} x y \).
- 計算下列代數式的差:(i) 從 $12xy$ 中減去 $-5xy$(ii) 從 $-7a^2$ 中減去 $2a^2$(iii) 從 \( 3 a-5 b \) 中減去 \( 2 a-b \)(iv) 從 \( 4 x^{3}+x^{2}+x+6 \) 中減去 \( 2 x^{3}-4 x^{2}+3 x+5 \)(v) 從 \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \) 中減去 \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \)(vi) 從 \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \) 中減去 \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \)(vii) 從 \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \) 中減去 \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \)(viii) 從 \( \frac{3}{5} b c-\frac{4}{5} a c \) 中減去 \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \)
- 驗證有理數加法的結合律,即 $(x + y) + z = x + (y + z)$,取值如下:(i) \( x=\frac{1}{2}, y=\frac{2}{3}, z=-\frac{1}{5} \)(ii) \( x=\frac{-2}{5}, y=\frac{4}{3}, z=\frac{-7}{10} \)(iii) \( x=\frac{-7}{11}, y=\frac{2}{-5}, z=\frac{-3}{22} \)(iv) \( x=-2, y=\frac{3}{5}, z=\frac{-4}{3} \)
- 解下列方程組:$\frac{2}{x}\ +\ \frac{3}{y}\ =\ 13$$\frac{5}{x}\ –\ \frac{4}{y}\ =\ -2$
- 計算下列代數式的和:(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
- 解下列方程組:$\frac{3}{x+y} +\frac{2}{x-y}=2$$\frac{9}{x+y}-\frac{4}{x-y}=1$
- 驗證:$x\times(y\times z)=(x\times y)\times z$,其中 $x=\frac{1}{2},\ y=\frac{1}{3}$ 和 $z=\frac{1}{4}$。
- 解方程:\( \frac{3 x}{5}+4+x-2=\frac{\frac{3 x}{5} \times x}{2} \)