將 ufunc outer() 函式應用於 Numpy 中的所有對
將ufunc outer() 函式應用於所有對。numpy.ufunc 具有按元素對整個陣列進行操作的函式。ufunc 用 C 語言編寫(為了獲得速度),並透過 NumPy 的 ufunc 設施連結到 Python 中。通用函式(簡稱 ufunc)是按元素的方式對 ndarray 進行操作的函式,支援陣列廣播、型別轉換以及其他一些標準功能。也就是說,ufunc 是一個“向量化”的包裝器,用於處理具有固定數量特定輸入併產生固定數量特定輸出的函式。
步驟
首先,匯入所需的庫 –
import numpy as np
建立兩個陣列 –
arr1 = np.array([[5, 10, 15, 20], [25, 30, 35, 40]]) arr2 = np.array([[7, 14, 21, 28, 35]])
顯示陣列 –
print("Array 1...
", arr1)
print("
Array 2...
", arr2)獲取陣列的型別 –
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)獲取陣列的維度 –
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)獲取陣列的形狀 –
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)將 ufunc outer() 函式應用於所有對 –
res = np.multiply.outer(arr1, arr2)
print("
Result...
",res)
print("
Shape...
",res.shape)舉例
import numpy as np
# The numpy.ufunc has functions that operate element by element on whole arrays.
# ufuncs are written in C (for speed) and linked into Python with NumPy's ufunc facility
# Create two arrays
arr1 = np.array([[5, 10, 15, 20], [25, 30, 35, 40]])
arr2 = np.array([[7, 14, 21, 28, 35]])
# Display the arrays
print("Array 1...
", arr1)
print("
Array 2...
", arr2)
# Get the type of the arrays
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)
# Get the dimensions of the Arrays
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)
# Get the shape of the Arrays
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)
# Apply the ufunc outer() function to all pairs
res = np.multiply.outer(arr1, arr2)
print("
Result...
",res)
print("
Shape...
",res.shape)輸出
Array 1... [[ 5 10 15 20] [25 30 35 40]] Array 2... [[ 7 14 21 28 35]] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 2 Our Array 2 Dimensions... 2 Our Array 1 Shape... (2, 4) Our Array 2 Shape... (1, 5) Result... [[[[ 35 70 105 140 175]] [[ 70 140 210 280 350]] [[ 105 210 315 420 525]] [[ 140 280 420 560 700]]] [[[ 175 350 525 700 875]] [[ 210 420 630 840 1050]] [[ 245 490 735 980 1225]] [[ 280 560 840 1120 1400]]]] Shape... (2, 4, 1, 5)
廣告
資料結構
網路
RDBMS
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP