在 NumPy 中將 ufunc outer() 函式應用於一維陣列的所有配對
我們將 ufunc outer() 函式應用於一維陣列的所有配對。numpy.ufunc 包含對整個陣列逐元素進行操作的函式。ufunc是用 C 語言編寫的(為了提高速度),並透過 NumPy 的 ufunc 功能連結到 Python 中。
通用函式(簡稱 ufunc)是一種以逐元素方式對 ndarray 進行操作的函式,支援陣列廣播、型別轉換和許多其他標準功能。也就是說,ufunc 是對一個函式的“向量化”包裝器,該函式接受固定數量的特定輸入併產生固定數量的特定輸出。
步驟
首先,匯入所需的庫 -
import numpy as np
numpy.ufunc 包含對整個陣列逐元素進行操作的函式。ufunc是用 C 語言編寫的(為了提高速度),並透過 NumPy 的 ufunc 功能連結到 Python 中 -
建立兩個一維陣列 -
arr1 = np.array([5, 10, 15, 20, 25, 30, 35, 40]) arr2 = np.array([7, 14, 21, 28, 35])
顯示陣列 -
print("Array 1...
", arr1)
print("
Array 2...
", arr2)獲取陣列的型別 -
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)獲取陣列的維度 -
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)獲取陣列的形狀 -
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)將 ufunc outer() 函式應用於所有 1D 陣列對 -
res = np.multiply.outer(arr1, arr2)
print("
Result...
",res)
print("
Shape...
",res.shape)示例
import numpy as np
# The numpy.ufunc has functions that operate element by element on whole arrays.
# ufuncs are written in C (for speed) and linked into Python with NumPy's ufunc facility
# Create two 1D arrays
arr1 = np.array([5, 10, 15, 20, 25, 30, 35, 40])
arr2 = np.array([7, 14, 21, 28, 35])
# Display the arrays
print("Array 1...
", arr1)
print("
Array 2...
", arr2)
# Get the type of the arrays
print("
Our Array 1 type...
", arr1.dtype)
print("
Our Array 2 type...
", arr2.dtype)
# Get the dimensions of the Arrays
print("
Our Array 1 Dimensions...
",arr1.ndim)
print("
Our Array 2 Dimensions...
",arr2.ndim)
# Get the shape of the Arrays
print("
Our Array 1 Shape...
",arr1.shape)
print("
Our Array 2 Shape...
",arr2.shape)
# Apply the ufunc outer() function to all pairs of 1D arrays
res = np.multiply.outer(arr1, arr2)
print("
Result...
",res)
print("
Shape...
",res.shape)輸出
Array 1... [ 5 10 15 20 25 30 35 40] Array 2... [ 7 14 21 28 35] Our Array 1 type... int64 Our Array 2 type... int64 Our Array 1 Dimensions... 1 Our Array 2 Dimensions... 1 Our Array 1 Shape... (8,) Our Array 2 Shape... (5,) Result... [[ 35 70 105 140 175] [ 70 140 210 280 350] [ 105 210 315 420 525] [ 140 280 420 560 700] [ 175 350 525 700 875] [ 210 420 630 840 1050] [ 245 490 735 980 1225] [ 280 560 840 1120 1400]] Shape... (8, 5)
廣告
資料結構
網路
關係型資料庫管理系統 (RDBMS)
作業系統
Java
iOS
HTML
CSS
Android
Python
C 程式設計
C++
C#
MongoDB
MySQL
Javascript
PHP