在 NumPy 中將 ufunc outer() 函式應用於所有二維陣列對


將 **ufunc outer()** 函式應用於所有 2D 陣列對。**numpy.ufunc** 包含逐元素操作整個陣列的函式。ufunc是用C語言編寫的(為了速度),並透過NumPy的ufunc工具連結到Python。

泛型函式(簡稱ufunc)是在逐元素基礎上操作ndarray的函式,支援陣列廣播、型別轉換以及其他一些標準特性。也就是說,ufunc是針對需要固定數量的特定輸入併產生固定數量的特定輸出的函式的“向量化”包裝器。

步驟

首先,匯入所需的庫 &minusl;

import numpy as np

建立兩個二維陣列 -

arr1 = np.array([[5, 10, 15, 20], [25, 30, 35, 40]])
arr2 = np.array([[7, 14, 21, 28, 35]])

顯示陣列 -

print("Array 1...
", arr1) print("
Array 2...
", arr2)

獲取陣列的型別 -

print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype)

獲取陣列的維度 -

print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim)

獲取陣列的形狀 -

print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape)

將 ufunc outer() 函式應用於所有陣列對 -

res = np.multiply.outer(arr1, arr2)
print("
Result...
",res) print("
Shape...
",res.shape)

示例

import numpy as np

# The numpy.ufunc has functions that operate element by element on whole arrays.
# ufuncs are written in C (for speed) and linked into Python with NumPy's ufunc facility

# Create two 2D arrays
arr1 = np.array([[5, 10, 15, 20], [25, 30, 35, 40]])
arr2 = np.array([[7, 14, 21, 28, 35]])

# Display the arrays
print("Array 1...
", arr1) print("
Array 2...
", arr2) # Get the type of the arrays print("
Our Array 1 type...
", arr1.dtype) print("
Our Array 2 type...
", arr2.dtype) # Get the dimensions of the Arrays print("
Our Array 1 Dimensions...
",arr1.ndim) print("
Our Array 2 Dimensions...
",arr2.ndim) # Get the shape of the Arrays print("
Our Array 1 Shape...
",arr1.shape) print("
Our Array 2 Shape...
",arr2.shape) # Apply the ufunc outer() function to all pairs res = np.multiply.outer(arr1, arr2) print("
Result...
",res) print("
Shape...
",res.shape)

輸出

Array 1...
[[ 5 10 15 20]
[25 30 35 40]]

Array 2...
[[ 7 14 21 28 35]]

Our Array 1 type...
int64

Our Array 2 type...
int64

Our Array 1 Dimensions...
2

Our Array 2 Dimensions...
2

Our Array 1 Shape...
(2, 4)

Our Array 2 Shape...
(1, 5)

Result...
[[[[ 35 70 105 140 175]]

[[ 70 140 210 280 350]]

[[ 105 210 315 420 525]]

[[ 140 280 420 560 700]]]


[[[ 175 350 525 700 875]]

[[ 210 420 630 840 1050]]

[[ 245 490 735 980 1225]]

[[ 280 560 840 1120 1400]]]]

Shape...
(2, 4, 1, 5)

更新於:2022年2月7日

265 次瀏覽

啟動您的 職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.