下表顯示了汽車的速度計讀數。求汽車的加速度和位移。
時間速度計
上午9:2536公里/小時
上午9:45
72公里/小時


已知

時間,$t$ = 20分鐘 = 20 × 60秒 = 1200秒 $[\because 9:45和9:25之間的時間差是20分鐘]$

初速度,$u$ = 36公里/小時 = $36\times {\frac {5}{18}}$ = 10米/秒 [將公里/小時轉換為米/秒,乘以$\frac {5}{18}$]

末速度,$v$ = 72公里/小時 = $72\times {\frac {5}{18}}$ = 20米/秒 [將公里/小時轉換為米/秒,乘以$\frac {5}{18}$]


求:汽車的加速度$a$及其位移$s$。


我們知道:

$a=\frac {v-u}{t}$

將給定值代入公式,我們得到:

$a=\frac {20-10}{1200}$

$a=\frac {10}{1200}$

$a=\frac {1}{120}$

$a=0.008米/秒^2$

因此,汽車的加速度$a$為0.008 $米/秒^2$


現在,

為了求汽車的位移,我們將使用運動的第二方程。

由運動的第二方程,我們有

$v^2-u^2=2as$

$(20)^2-(10)^2=2\times({\frac {1}{120}})s$

$400-100=(\frac {1}{60})s$

$300=\frac {1}{60}s$

$s=300\times {60}$

$s=300\times {60}$

$s=18000米 或 18公里$

因此,位移或距離的大小為18000米18公里

更新於:2022年10月10日

658 次瀏覽

啟動你的職業生涯

完成課程獲得認證

開始學習
廣告
© . All rights reserved.