因式分解下列表達式:$(a + b)^3 - 8(a - b)^3$


已知

$(a + b)^3 - 8(a - b)^3$

要求

我們需要因式分解給定的表示式。

解答

我們知道:

$a^3 + b^3 = (a + b) (a^2 - ab + b^2)$

$a^3 - b^3 = (a - b) (a^2 + ab + b^2)$

因此:

$(a + b)^3 - 8(a - b)^3 = (a + b)^3 - (2a - 2b)^3$

$= (a+ b - 2a + 2b) [(a + b)^2 + (a + b) (2a-2b) + (2a - 2b)^2)]$

$= (3b - a) [a^2 + b^2 + 2ab + 2a^2 - 2ab + 2ab - 2b^2 + 4a^2 - 8ab + 4b^2]$

$= (3b - a) [7a^2 - 6ab + 3b^2]$

因此,$(a + b)^3 - 8(a - b)^3 = (3b - a) [7a^2 - 6ab + 3b^2]$。

更新於:2022年10月10日

瀏覽量:1000+

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告