假設 $x, y, z$ 是正實數,化簡下列各式:\( (\sqrt{x})^{-2 / 3} \sqrt{y^{4}} \div \sqrt{x y^{-1 / 2}} \)
已知
\( (\sqrt{x})^{-2 / 3} \sqrt{y^{4}} \div \sqrt{x y^{-1 / 2}} \)
要求
我們必須化簡給定的表示式。
解答
我們知道:
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
因此:
$(\sqrt{x})^{-2 / 3} \sqrt{y^{4}} \div \sqrt{x y^{-1 / 2}}=(x^{\frac{1}{2}})^{\frac{-2}{3}} \times (y^{\frac{1}{2}})^{4} \div x^{\frac{1}{2}}(y^{\frac{-1}{2}})^{\frac{1}{2}}$
$=x^{\frac{1}{2}\times(\frac{-2}{3})} \times y^{\frac{1}{2} \times 4} \div x^{\frac{1}{2}} \times y^{\frac{-1}{2} \times \frac{1}{2}}$
$=x^{\frac{-1}{3}} \times y^{2} \div x^{\frac{1}{2}} \times y^{\frac{-1}{4}}$
$=x^{\frac{-1}{3}-\frac{1}{2}} \times y^{2-\frac{-1}{4}}$
$=x^{\frac{-2-3}{6}} \times y^{2+\frac{1}{4}}$
$=x^{\frac{-5}{6}} \times y^{\frac{9}{4}}$
$=\frac{y^{\frac{9}{4}}}{x^{\frac{5}{6}}}$
因此,\( (\sqrt{x})^{-2 / 3} \sqrt{y^{4}} \div \sqrt{x y^{-1 / 2}}=\frac{y^{\frac{9}{4}}}{x^{\frac{5}{6}}} \)。
- 相關文章
- 假設 $x, y, z$ 是正實數,化簡下列各式:$\sqrt{x^{3} y^{-2}}$
- 假設 $x, y, z$ 是正實數,化簡下列各式:$(\sqrt{x^{-3}})^{5}$
- 假設 $x, y, z$ 是正實數,化簡下列各式:\( \sqrt[5]{243 x^{10} y^{5} z^{10}} \)
- 假設 $x, y, z$ 是正實數,化簡下列各式:$\left(x^{-2 / 3} y^{-1 / 2}\right)^{2}$
- 假設 $x,\ y,\ z$ 是正實數,化簡下列各式:$( x^{\frac{-2}{3}}y^{\frac{-1}{2}})^{2}$。
- 假設 $x, y, z$ 是正實數,化簡下列各式:\( \left(\frac{\sqrt{2}}{\sqrt{3}}\right)^{5}\left(\frac{6}{7}\right)^{2} \)
- 如果 $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=x,\ \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=y$,求 $x^{2}+y^{2}+x y$ 的值。
- 因式分解:(i) \( 4 x^{2}+9 y^{2}+16 z^{2}+12 x y-24 y z-16 x z \)(ii) \( 2 x^{2}+y^{2}+8 z^{2}-2 \sqrt{2} x y+4 \sqrt{2} y z-8 x z \)
- 假設 $x, y, z$ 是正實數,化簡下列各式:\( \left(\frac{x^{-4}}{y^{-10}}\right)^{5 / 4} \)
- 化簡下列各式:\( (x+y-2 z)^{2}-x^{2}-y^{2}-3 z^{2}+4 x y \)
- 解下列方程組:$\sqrt{2}x\ –\ \sqrt{3}y\ =\ 0$ $\sqrt{3}x\ −\ \sqrt{8}y\ =\ 0$
- 化簡:$2 x+3 y-4 z-(3 y+5 x-2 z)$
- 將下列方程組化為一元一次方程組求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \)(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 驗證 \( x^{3}+y^{3}+z^{3}-3 x y z=\frac{1}{2}(x+y+z)\left[(x-y)^{2}+(y-z)^{2}+(z-x)^{2}\right] \)
- 解下列方程:\( 4^{2 x}=(\sqrt[3]{16})^{-6 / y}=(\sqrt{8})^{2} \)