在 C++ 中查詢 Binary Tree 中兩個節點之間的距離
考慮我們有一個包含幾個節點的二叉樹。我們必須找出兩個節點 u 和 v 之間的距離。假設該樹如下所示 −
現在,(4, 6) 之間的距離 = 4,路徑長度為 4,(5, 8) 之間的長度 = 5,依此類推。
為了解決此問題,我們將找到 LCA(最低公共祖先),然後計算從 LCA 到兩個節點的距離。
示例
#include<iostream> using namespace std; class Node { public: int data; Node *left, *right; }; Node* getNode(int data) { Node* node = new Node; node->data = data; node->left = node->right = NULL; return node; } Node* LowestCommonAncestor(Node * root, int n1,int n2) { if (root == NULL) return root; if (root->data == n1 || root->data == n2) return root; Node* left = LowestCommonAncestor(root->left, n1, n2); Node* right = LowestCommonAncestor(root->right, n1, n2); if (left != NULL && right != NULL) return root; if (left != NULL) return LowestCommonAncestor(root->left, n1, n2); return LowestCommonAncestor(root->right, n1, n2); } int getLevel(Node *root, int k, int level) { if(root == NULL) return -1; if(root->data == k) return level; int left = getLevel(root->left, k, level+1); if (left == -1) return getLevel(root->right, k, level+1); return left; } int findDistance(Node* root, int a, int b) { Node* lca = LowestCommonAncestor(root, a , b); int dist1 = getLevel(lca, a, 0); int dist2 = getLevel(lca, b, 0); return dist1 + dist2; } int main() { Node* root = getNode(1); root->left = getNode(2); root->right = getNode(3); root->left->left = getNode(4); root->left->right = getNode(5); root->right->left = getNode(6); root->right->right = getNode(7); root->right->left->right = getNode(8); cout << "Distance between (4, 6) is: " << findDistance(root, 4, 6); cout << "\nDistance between (8, 5) is: " << findDistance(root, 8, 5); }
輸出
Distance between (4, 6) is: 4 Distance between (8, 5) is: 5
廣告