從下列四個選項中選擇正確的答案
對於什麼值 \( k \),方程 \( 3 x-y+8=0 \) 和 \( 6 x-k y=-16 \) 表示重合的直線?
(A) \( \frac{1}{2} \)
(B) \( -\frac{1}{2} \)
(C) 2
(D) \( -2 \)
已知
方程組 \( 3 x-y+8=0 \) 和 \( 6 x-k y=-16 \) 表示重合的直線。
解題步驟
我們需要找到正確的選項。
解答
我們知道:
重合直線的條件是:
$\frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}$
\( 3 x-y+8=0 \) 和 \( 6 x-k y=-16 \)
這裡:
$a_1=3, b_1=-1, c_1=8$
$a_2=6, b_2=-k, c_2=16$
因此:
$\frac{3}{6}=\frac{-1}{-k}=\frac{8}{16}$
$\frac{1}{k}=\frac{1}{2}$
$k=2$
$k$ 的值為 2。
- 相關文章
- 下列方程是否表示一對重合的直線?請說明你的答案。\( \frac{x}{2}+y+\frac{2}{5}=0 \)\( 4 x+8 y+\frac{5}{16}=0 \)
- 下列方程是否表示一對重合的直線?請說明你的答案。\( -2 x-3 y=1 \)\( 6 y+4 x=-2 \)
- 如果由 \( 3 x+2 k y=2 \) 和 \( 2 x+5 y+1=0 \) 給出的直線平行,則 \( k \) 的值為 (A) \( \frac{-5}{4} \)(B) \( \frac{2}{5} \)(C) \( \frac{15}{4} \)(D) \( \frac{3}{2} \)
- 從下列四個選項中選擇正確的答案:如果 \( \frac{1}{2} \) 是方程 \( x^{2}+k x-\frac{5}{4}=0 \) 的一個根,則 \( k \) 的值為 (A) 2(B) \( -2 \)(C) \( \frac{1}{4} \)(D) \( \frac{1}{2} \)
- 解下列方程組:\( \frac{1}{2 x}-\frac{1}{y}=-1 \)\( \frac{1}{x}+\frac{1}{2 y}=8, x, y ≠ 0 \)
- 從下列四個選項中選擇正確的答案:下列哪個是二次方程?(A) \( x^{2}+2 x+1=(4-x)^{2}+3 \)(B) \( -2 x^{2}=(5-x)\left(2 x-\frac{2}{5}\right) \)(C) \( (k+1) x^{2}+\frac{3}{2} x=7 \),其中 \( k=-1 \)(D) \( x^{3}-x^{2}=(x-1)^{3} \)
- (i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
- 將下列方程組簡化為線性方程組,然後求解:(i) \( \frac{1}{2 x}+\frac{1}{3 y}=2 \)\( \frac{1}{3 x}+\frac{1}{2 y}=\frac{13}{6} \)(ii) \( \frac{2}{\sqrt{x}}+\frac{3}{\sqrt{y}}=2 \)\( \frac{4}{\sqrt{x}}-\frac{9}{\sqrt{y}}=-1 \)(iii) \( \frac{4}{x}+3 y=14 \)\( \frac{3}{x}-4 y=23 \)(iv) \( \frac{5}{x-1}+\frac{1}{y-2}=2 \)\( \frac{6}{x-1}-\frac{3}{y-2}=1 \)(v) \( \frac{7 x-2 y}{x y}=5 \)\( \frac{8 x+7 y}{x y}=15 \)(vi) \( 6 x+3 y=6 x y \)\( 2 x+4 y=5 x y \)(vii) \( \frac{10}{x+y}+\frac{2}{x-y}=4 \)\( \frac{15}{x+y}-\frac{5}{x-y}=-2 \)(viii) \( \frac{1}{3 x+y}+\frac{1}{3 x-y}=\frac{3}{4} \)\( \frac{1}{2(3 x+y)}-\frac{1}{2(3 x-y)}=\frac{-1}{8} \).
- 解下列方程組:$\frac{5}{x-1} +\frac{1}{y-2}=2$$\frac{6}{x-1}-\frac{3}{y-2}=1$
- 從下列四個選項中選擇正確的答案:如果二次多項式 \( (k-1) x^{2}+k x+1 \) 的一個零點是 \( -3 \),則 \( k \) 的值為 (A) \( \frac{4}{3} \)(B) \( \frac{-4}{3} \)(C) \( \frac{2}{3} \)(D) \( \frac{-2}{3} \)
- 解下列方程:\( 8^{x+1}=16^{y+2} \) 和 \( \left(\frac{1}{2}\right)^{3+x}=\left(\frac{1}{4}\right)^{3 y} \)
- 從下列四個選項中選擇正確的答案:下列哪個方程的根之和為 3?(A) \( 2 x^{2}-3 x+6=0 \)(B) \( -x^{2}+3 x-3=0 \)(C) \( \sqrt{2} x^{2}-\frac{3}{\sqrt{2}} x+1=0 \)(D) \( 3 x^{2}-3 x+3=0 \)
- 1. 因式分解表示式 \( 3 x y - 2 + 3 y - 2 x \) (A) \( (x+1),(3 y-2) \) (B) \( (x+1),(3 y+2) \) (C) \( (x-1),(3 y-2) \) (D) \( (x-1),(3 y+2) \) 2. 因式分解表示式 \( xy-x-y+1 \) (A) \( (x-1),(y+1) \) (B) \( (x+1),(y-1) \) (C) \( (x-1),(y-1) \) (D) \( (x+1),(y+1) \)
- 計算差:(i) 從 $12xy$ 中減去 $-5xy$ (ii) 從 $-7a^2$ 中減去 $2a^2$ (iii) 從 \( 3 a-5 b \) 中減去 \( 2 a-b \) (iv) 從 \( 4 x^{3}+x^{2}+x+6 \) 中減去 \( 2 x^{3}-4 x^{2}+3 x+5 \) (v) 從 \( \frac{1}{3} y^{3}+\frac{5}{7} y^{2}+y-2 \) 中減去 \( \frac{2}{3} y^{3}-\frac{2}{7} y^{2}-5 \) (vi) 從 \( \frac{2}{3} x+\frac{3}{2} y-\frac{4}{3} z \) 中減去 \( \frac{3}{2} x-\frac{5}{4} y-\frac{7}{2} z \) (vii) 從 \( \frac{2}{3} x^{2} y+\frac{3}{2} x y^{2}- \) \( \frac{1}{3} x y \) 中減去 \( x^{2} y-\frac{4}{5} x y^{2}+\frac{4}{3} x y \) (viii) 從 \( \frac{3}{5} b c-\frac{4}{5} a c \) 中減去 \( \frac{a b}{7}-\frac{35}{3} b c+\frac{6}{5} a c \)
- 解下列方程組:$\frac{6}{x+y} =\frac{7}{x-y}+3$$\frac{1}{2(x+y)}=\frac{1}{3(x-y)}$