C++中所有可能的完全二叉樹
假設完全二叉樹是指每個節點恰好有0個或2個子節點的二叉樹。因此,我們必須找到具有N個節點的所有可能的完全二叉樹的列表。答案中每棵樹的每個節點都必須具有node.val = 0。返回的樹可以是任意順序。因此,如果輸入是7,則樹為:
為了解決這個問題,我們將遵循以下步驟:
定義一個整數型別鍵和樹型別值的對映m。
定義一個名為allPossibleFBT()的方法,它將N作為輸入。
如果N為1,則建立一個只有一個節點且值為0的樹,並返回。
如果m包含鍵N,則返回m[N]。定義一個名為temp的陣列,並令req := N – 1。
對於left in range 1 to req – 1
right := req – left
如果left = 2或right = 2,則進行下一次迭代。
leftPart := allPossibleFBT(left), rightPart := allPossibleFBT(right)
對於j in range 0 to size of leftPart - 1
對於k in range 0 to size of rightPart – 1
root := 一個值為0的新節點
root的左子節點 := leftPart[j],root的右子節點 := rightPart[k]
將root插入ans
設定m[N] := ans 並返回。
示例(C++)
讓我們看看下面的實現來更好地理解:
#include <bits/stdc++.h> using namespace std; class TreeNode{ public: int val; TreeNode *left, *right; TreeNode(int data){ val = data; left = right = NULL; } }; void tree_level_trav(TreeNode*root){ if (root == NULL) return; cout << "["; queue<TreeNode *> q; TreeNode *curr; q.push(root); q.push(NULL); while (q.size() > 1) { curr = q.front(); q.pop(); if (curr == NULL){ q.push(NULL); } else { if(curr->left) q.push(curr->left); if(curr->right) q.push(curr->right); if(curr == NULL || curr->val == 0){ cout << "null" << ", "; } else { cout << curr->val << ", "; } } } cout << "]"<<endl; } class Solution { public: map < int, vector <TreeNode*> > m; vector<TreeNode*> allPossibleFBT(int N) { if(N == 1){ vector <TreeNode*> temp; TreeNode *n = new TreeNode(1); n->left = new TreeNode(0); n->right = new TreeNode(0); temp.push_back(n); return temp; } if(m.count(N))return m[N]; vector <TreeNode*> ans; int required = N - 1; for(int left = 1; left < required; left++){ int right = required - left; if(left == 2 || right == 2)continue; vector <TreeNode*> leftPart = allPossibleFBT(left); vector <TreeNode*> rightPart = allPossibleFBT(right); for(int j = 0; j < leftPart.size(); j++){ for(int k = 0; k < rightPart.size(); k++){ TreeNode* root = new TreeNode(1); root->left = leftPart[j]; root->right = rightPart[k]; ans.push_back(root); } } } return m[N] = ans; } }; main(){ vector<TreeNode*> v; Solution ob; v = (ob.allPossibleFBT(7)) ; for(TreeNode *t : v){ tree_level_trav(t); } }
輸入
7
輸出
[1, 1, 1, null, null, 1, 1, null, null, 1, 1, null, null, null, null, ] [1, 1, 1, null, null, 1, 1, 1, 1, null, null, null, null, null, null, ] [1, 1, 1, 1, 1, 1, 1, null, null, null, null, null, null, null, null, ] [1, 1, 1, 1, 1, null, null, null, null, 1, 1, null, null, null, null, ] [1, 1, 1, 1, 1, null, null, 1, 1, null, null, null, null, null, null, ]
廣告