C++合併兩棵二叉樹
假設我們有兩棵二叉樹,並且考慮當我們將其中一棵樹覆蓋到另一棵樹上時,兩棵樹的一些節點重疊,而其他節點沒有重疊。我們必須將它們合併成一棵新的二叉樹。合併規則是這樣的:如果兩個節點重疊,則將節點值相加作為合併節點的新值。否則,非空節點將用作新樹的節點。
所以如果樹是:
那麼輸出將是:
為了解決這個問題,我們將遵循以下步驟:
該方法是mergeTrees()。它接受兩個樹節點n1和n2。它類似於:
如果n1為空,而n2非空,則返回n2,否則當n2為空,而n1非空時,則返回n1,當兩者都為空時,則返回null
n1的值 := n1的值 + n2的值
n1的左子樹 := mergeTrees(n1的左子樹, n2的左子樹)
n1的右子樹 := mergeTrees(n1的右子樹, n2的右子樹)
返回n1
示例(C++)
讓我們看看下面的實現以更好地理解:
#include <bits/stdc++.h> using namespace std; class TreeNode{ public: int val; TreeNode *left, *right; TreeNode(int data){ val = data; left = right = NULL; } }; void insert(TreeNode **root, int val){ queue<TreeNode*> q; q.push(*root); while(q.size()){ TreeNode *temp = q.front(); q.pop(); if(!temp->left){ temp->left = new TreeNode(val); return; } else{ q.push(temp->left); } if(!temp->right){ temp->right = new TreeNode(val); return; } else{ q.push(temp->right); } } } TreeNode *make_tree(vector<int> v){ TreeNode *root = new TreeNode(v[0]); for(int i = 1; i<v.size(); i++){ insert(&root, v[i]); } return root; } void tree_level_trav(TreeNode*root){ if (root == NULL) return; cout << "["; queue<TreeNode *> q; TreeNode *curr; q.push(root); q.push(NULL); while (q.size() > 1) { curr = q.front(); q.pop(); if (curr == NULL){ q.push(NULL); } else { if(curr->left) q.push(curr->left); if(curr->right) q.push(curr->right); if(curr->val == 0){ cout << "null" << ", "; } else{ cout << curr->val << ", "; } } } cout << "]"<<endl; } class Solution { public: TreeNode* mergeTrees(TreeNode* n1, TreeNode* n2) { if(!n1 && n2){ return n2; } else if(!n2 && n1)return n1; else if(!n1 && !n2)return NULL; n1->val+=n2->val; n1->left = mergeTrees(n1->left,n2->left); n1->right = mergeTrees(n1->right,n2->right); return n1; } }; main(){ Solution ob; vector<int> v1 = {1,3,2,5}; vector<int> v2 = {2,1,3,NULL,4,NULL,7}; TreeNode *root1 = make_tree(v1); TreeNode *root2 = make_tree(v2); root1 = ob.mergeTrees(root1, root2); tree_level_trav(root1); }
輸入
[1,3,2,5] [2,1,3,null,4,null,7]
輸出
[3, 4, 5, 5, 4, null, 7, ]
廣告