下列哪幾對錶示相同的 rational number(有理數)?
$(i)$. $-\frac{7}{21}$ 和 $\frac{3}{9}$
$(ii)$. $-\frac{16}{20}$ 和 $\frac{20}{-25}$
$(iii)$. $\frac{-2}{-3}$ 和 $\frac{2}{3}$
$(iv)$. $\frac{-3}{5}$ 和 $\frac{-12}{20}$
$(v)$. $\frac{8}{5}$ 和 $\frac{-24}{15}$
$(vi)$. $\frac{1}{3}$ 和 $\frac{-1}{9}$
$(viii)$ $\frac{-5}{-9}$ 和 $\frac{5}{-9}$
已知:有理數對
$(i)$. $-\frac{7}{21}$ 和 $\frac{3}{9}$
$(ii)$. $-\frac{16}{20}$ 和 $\frac{20}{-25}$
$(iii)$. $\frac{-2}{-3}$ 和 $\frac{2}{3}$
$(iv)$. $\frac{-3}{5}$ 和 $\frac{-12}{20}$
$(v)$. $\frac{8}{-5}$ 和 $\frac{-24}{15}$
$(vi)$. $\frac{1}{3}$ 和 $\frac{-1}{9}$
$(viii)$ $\frac{-5}{-9}$ 和 $\frac{5}{-9}$
要求:找出表示相同有理數的對。
解答:$(i)$. $-\frac{7}{21}$ 和 $\frac{3}{9}$
已知數對為:$(i)$. $-\frac{7}{21}$ 和 $\frac{3}{9}$
將分數約簡到最簡形式
$-\frac{7}{21}$
$= -\frac{1}{3}$
以及 $\frac{3}{9}$
$= \frac{1}{3}$
比較兩個分數,我們有:$-\frac{1}{3} ≠ \frac{1}{3}$
因此,數對 $-\frac{7}{21}$ 和 $\frac{3}{9}$ 不表示相同的 rational number(有理數)。
$(ii)$. $-\frac{16}{20}$ 和 $\frac{20}{(-25)}$
已知有理數對:$-\frac{16}{20}$ 和 $\frac{20}{(-25)}$
將兩個有理數約簡到最簡形式
$-\frac{16}{20}$
$= -\frac{4}{5}$
以及 $\frac{20}{(-25)} = \frac{4}{(-5)}$
比較已知有理數對的最簡形式,我們有
$-\frac{4}{5} = \frac{4}{(-5)}$
因此,$-\frac{16}{20}$ 和 $\frac{20}{(-25)}$ 表示相同的 rational number(有理數)對。
$(iii)$. $-\frac{2}{(-3)}$ 和 $\frac{2}{3}$
已知有理數對:$-\frac{2}{(-3)}$ 和 $\frac{2}{3}$
將兩個有理數約簡到最簡形式
$-\frac{2}{(-3)} = \frac{2}{3}$ 和 $\frac{2}{3} = \frac{2}{3}$
比較已知有理數對的最簡形式,我們有:$\frac{-2}{-3} = \frac{2}{3}$
因此,$-\frac{2}{(-3)}$ 和 $\frac{2}{3}$ 表示相同的 rational number(有理數)對。
$(iv)$. $-\frac{3}{5}$ 和 $-\frac{12}{20}$
已知有理數對:$-\frac{3}{5}$ 和 $-\frac{12}{20}$
將兩個有理數約簡到最簡形式
$-\frac{3}{5} = -\frac{3}{5}$
以及 $-\frac{12}{20} = -\frac{3}{5}$
比較已知有理數對的最簡形式,我們有:$-\frac{3}{5} = -\frac{3}{5}$
因此,$-\frac{3}{5}$ 和 $-\frac{12}{20}$ 表示相同的 rational number(有理數)對。
$(v)$. $\frac{8}{(-5)}$ 和 $-\frac{24}{15}$
已知有理數對:$\frac{8}{(-5)}$ 和 $-\frac{24}{15}$
將兩個有理數約簡到最簡形式
$\frac{8}{(-5)} = -\frac{8}{5}$
以及 $-\frac{24}{15} = -\frac{8}{5}$
比較已知有理數對的最簡形式,我們有:$\frac{8}{-5} = -\frac{8}{5}$
因此,$\frac{8}{-5}$ 和 $-\frac{24}{15}$ 表示相同的 rational number(有理數)對。
$(vi)$. $\frac{1}{3}$ 和 $-\frac{1}{9}$
已知有理數對:$\frac{1}{3}$ 和 $-\frac{1}{9}$
將兩個有理數約簡到最簡形式
$\frac{1}{3} = \frac{1}{3}$
以及 $-\frac{1}{9} = -\frac{1}{9}$
比較已知有理數對的最簡形式,我們有:$\frac{1}{3} ≠ -\frac{1}{9}$
因此,$\frac{1}{3}$ 和 $-\frac{1}{9}$ 不表示相同的 rational number(有理數)對。
$(vii)$. $-\frac{5}{(-9)}$ 和 $\frac{5}{(-9)}$
已知有理數對:$-\frac{5}{(-9)}$ 和 $\frac{5}{(-9)}$
將兩個有理數約簡到最簡形式
$-\frac{5}{(-9)} = \frac{5}{9}$ 和 $\frac{5}{(-9)} = -\frac{5}{9}$
比較已知有理數對的最簡形式,我們有:$\frac{5}{9} ≠ -\frac{5}{9}$
因此,$\frac{-5}{-9}$ 和 $\frac{5}{-9}$ 不表示相同的 rational number(有理數)對。
- 相關文章
- 重新排列並計算下列各式的和:(i) \( \frac{11}{12}+\frac{-17}{3}+\frac{11}{2}+\frac{-25}{2} \)(ii) \( \frac{-6}{7}+\frac{-5}{6}+\frac{-4}{9}+\frac{-15}{7} \)(iii) \( \frac{3}{5}+\frac{7}{3}+\frac{9}{5}+\frac{-13}{15}+\frac{-7}{3} \)(iv) \( \frac{4}{13}+\frac{-5}{8}+\frac{-8}{13}+\frac{9}{13} \)(v) \( \frac{2}{3}+\frac{-4}{5}+\frac{1}{3}+\frac{2}{5} \)(vi) \( \frac{1}{8}+\frac{5}{12}+\frac{2}{7}+\frac{7}{12}+\frac{9}{7}+\frac{-5}{16} \)
- 化簡:(i) \( \frac{8}{9}+\frac{-11}{5} \)(ii) \( 3+\frac{5}{-7} \)(iii) \( \frac{1}{-12} \) 和 \( \frac{2}{-15} \)(iv) \( \frac{-8}{19}+\frac{-4}{57} \)(v) \( \frac{7}{9}+\frac{3}{-4} \)(vi) \( \frac{5}{26}+\frac{11}{-39} \)(vii) \( \frac{-16}{9}+\frac{-5}{12} \)(viii) \( \frac{-13}{8}+\frac{5}{36} \)(ix) \( 0+\frac{-3}{5} \)(x) \( 1+\frac{-4}{5} \)(xi) \( \frac{-5}{16}+\frac{7}{24} \)
- 化簡下列各式,並寫成 \( \frac{a}{b} \) 的形式:(i) \( \frac{3}{4}+\frac{5}{6}+\frac{-7}{8} \)(ii) \( \frac{2}{3}+\frac{-5}{6}+\frac{-7}{9} \)(iii) \( \frac{-11}{2}+\frac{7}{6}+\frac{-5}{8} \)(iv) \( \frac{-4}{5}+\frac{-7}{10}+\frac{-8}{15} \)(v) \( \frac{-9}{10}+\frac{22}{15}+\frac{13}{-20} \)(vi) \( \frac{5}{3}+\frac{3}{-2}+\frac{-7}{3}+3 \)
- 計算:(i) $3-\frac{2}{5}$(ii) $4+\frac{7}{8}$(iii) $\frac{3}{5}+\frac{2}{7}$(iv) $\frac{9}{11}-\frac{4}{15}$(v) $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$(vi) $2\frac{2}{3}+3\frac{1}{2}$(vii) $8\frac{1}{2}-3\frac{5}{8}$
- 下列哪幾對錶示相同的 rational number(有理數)?(i) \( \frac{-7}{21} \) 和 \( \frac{3}{9} \)(ii) \( \frac{-16}{20} \) 和 \( \frac{20}{-25} \)
- 計算下列有理數的和:(i) \( \frac{3}{4} \) 和 \( \frac{-5}{8} \)(ii) \( \frac{5}{-9} \) 和 \( \frac{7}{3} \)(iii) \( -3 \) 和 \( \frac{3}{5} \)(iv) \( \frac{-7}{27} \) 和 \( \frac{11}{18} \)(v) \( \frac{31}{-4} \) 和 \( \frac{-5}{8} \)(vi) \( \frac{5}{36} \) 和 \( \frac{-7}{12} \)(vii) \( \frac{-5}{16} \) 和 \( \frac{7}{24} \)(viii) \( \frac{7}{-18} \) 和 \( \frac{8}{27} \)
- 計算:(i) $\frac{2}{5}\div\frac{1}{2}$(ii) $\frac{4}{9}\div\frac{2}{3}$(iii) $\frac{3}{7}\div\frac{8}{7}$(iv) $2\frac{1}{3}\div\frac{3}{5}$(v) $3\frac{1}{2}\div\frac{8}{3}$(vi) $\frac{2}{5}\div1\frac{1}{2}$(vii) $3\frac{1}{5}\div1\frac{2}{3}$(viii) $2\frac{1}{5}\div1\frac{1}{5}$
- 求下列各 rational number(有理數)的乘法逆元(倒數):(i) 9(ii) \( -7 \)(iii) \( \frac{12}{5} \)(iv) \( \frac{-7}{9} \)(v) \( \frac{-3}{-5} \)(vi) \( \frac{2}{3} \times \frac{9}{4} \)(vii) \( \frac{-5}{8} \times \frac{16}{15} \)(viii) \( -2 \times \frac{-3}{5} \)(ix)-1 \)(x) \frac{0}{3} \)(xi) 1
- 計算下列各式的和:(i). $\frac{5}{4}+(-\frac{11}{4})$(ii). $\frac{5}{3}+\frac{3}{5}$(iii). $\frac{-9}{10}+\ \frac{22}{15}$(iv). $\frac{-3}{11}+\frac{5}{9}$(v). $\frac{-8}{19}+(-\frac{2}{57})$(vi). $-\frac{2}{3}+0$(vii). $-2\frac{1}{3}\ +\ 4\frac{3}{5}$
- 利用有理數加法的交換律和結合律,將下列各式表示成有理數:(i) \( \frac{2}{5}+\frac{7}{3}+\frac{-4}{5}+\frac{-1}{3} \)(ii) \( \frac{3}{7}+\frac{-4}{9}+\frac{-11}{7}+\frac{7}{9} \)(iii) \( \frac{2}{5}+\frac{8}{3}+\frac{-11}{15}+\frac{4}{5}+\frac{-2}{3} \)(iv) \( \frac{4}{7}+0+\frac{-8}{9}+\frac{-13}{7}+\frac{17}{21} \)
- 計算下列各式的積:(i). $\frac{9}{2}\times(-\frac{7}{4})$(ii). $\frac{3}{10}\times(-9)$(iii). $-\frac{6}{5}\times\frac{9}{11}$(iv). $\frac{3}{7}\times(-\frac{2}{5})$(v). $\frac{3}{11}\times\ \frac{2}{5}$(vi). $\frac{3}{-5}\times(-\frac{5}{3})$
- 化簡:(i) \( \frac{-3}{2}+\frac{5}{4}-\frac{7}{4} \)(ii) \( \frac{5}{3}-\frac{7}{6}+\frac{-2}{3} \)(iii) \( \frac{5}{4}-\frac{7}{6}-\frac{-2}{3} \)(iv) \( \frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7} \)(v) \( \frac{5}{6}+\frac{-2}{5}-\frac{-2}{15} \)(vi) \( \frac{3}{8}-\frac{-2}{9}+\frac{-5}{36} \)
- 將下列有理數按升序排列:(i). $\frac{-3}{5},\ \frac{-2}{5},\ \frac{-1}{5}$(ii). $\frac{1}{3},\ \frac{-2}{9},\ \frac{-4}{3}$(iii). $\frac{-3}{7},\ \frac{-3}{2},\ \frac{-3}{4}$
- 在下列每個數列中再寫出四個有理數:(i). $\frac{-3}{5},\ \frac{-6}{10},\ \frac{-9}{15},\ \frac{-12}{20}$........(ii). $\frac{-1}{4},\ \frac{-2}{8},\ \frac{-3}{12}$.....(iii). $\frac{-1}{6},\ \frac{2}{-12},\ \frac{3}{-18},\ \frac{4}{-24}$......(iv). $\frac{-2}{3},\ \frac{2}{-3},\ \frac{4}{-6},\ \frac{6}{-9}$.....
- 計算乘積並約簡到最簡形式(如果可能):(i) $\frac{2}{3}\times2\frac{2}{3}$(ii) $\frac{2}{7}\times\frac{7}{9}$(iii) $\frac{3}{8}\times\frac{6}{4}$(iv) $\frac{9}{5}\times\frac{3}{5}$(v) $\frac{1}{3}\times\frac{15}{8}$(vi) $\frac{11}{2}\times\frac{3}{10}$(vii) $\frac{4}{5}\times\frac{12}{7}$