使用球面測微計測定給定球面曲率半徑


半徑是圓的特定運動點,它隨著運動曲線的變化而自身改變位置。曲率半徑是根據曲線位置確定位置的曲線。曲率半徑是特定透鏡彎曲部分的形成,其中半徑是由圓的運動形成的。在本教程中,將重點介紹使用球面測微計計算曲率半徑的方法,該方法有助於測量三角形框架。

球面測微計的描述

一種幫助測量三個構成三角形的支腳的儀器,其公式是估計曲率半徑的最終過程。三個部分的尖端構成一個等邊三角形,並位於圓的半徑上。

球面測微計最令人興奮的特點是,中心部分可以在垂直方向上移動,這有助於對曲率半徑進行適當的計算。一個圓形桌面固定在頭部,幷包含一個刻度,標記邊緣的外側部分。所有不同的部分(球面測微計的支腳)都是可調節的,高度是可讀的(Definitions,2022)。此外,球面測微計進行一次旋轉相當於 1mn。

A Spherometer

圖 1:球面測微計

曲率半徑公式

Radius of curvature

圖 2:曲率半徑

曲線的曲率半徑是在給定特定位置處的圓的半徑。圓的運動可能會由於移動圓的半徑發生變化而導致曲率發生變化 (Lodder,2018)。

字元“R”表示用於估計曲率半徑值的公式。曲線的導數量對曲線是平坦的,它可以用標量量在後面形成曲線 (Sciencing,2022)。

此外,曲率半徑是一個虛構的圓,而不是實際的形狀或影像。曲率半徑是從頂點到曲率中心的長度。“Y”或曲線等於 f(x),其中“x”表示半徑。

主焦點和焦距

Principle Focus and Focal Length in Radius of curvature

圖 3:曲率半徑中的主焦點和焦距

當光線從主軸平行於凸透鏡透過時,會匯聚到主軸上。由於透鏡的匯聚,來自不同方向的光線的交匯點為主焦點,光線在匯聚後到交匯點所經過的區域為焦距 (f) (Chen 等人,2020)。

此外,主焦點和光心之間的距離為焦距,等於曲率半徑 R 的一半。

計算步驟

以下步驟是利用球面測微計估計曲率半徑計算的實際過程。

  • 為了獲得速度計的三個孔,學生需要透過抬起中心部分的螺釘並將出現的孔分別標記為 A、B 和 C,將球面測微計推到實踐練習本上。
  • 在下一步中,學生需要連線練習本上繪製的三個點並形成一個三角形,這有助於更準確地測量這三個孔之間的距離。
  • 在下一階段,學生可以藉助點之間距離 AB、BC 和 CA 記錄三個平均值。在此步驟之後,記錄所用球面測微計的最小刻度和螺距至關重要 (Khakimzyanov & Rashidov,2022)。輕輕向上抬起螺釘是計算過程中的下一步。
  • 在下一階段,學生需要將球面測微計放置在凸透鏡表面上,使儀器的三個支腳位於其上。
  • 抬起後,學生需要向下旋轉螺釘,直到它連線到凸透鏡的表面。任何人都可以輕鬆地記下從圓形刻度上讀取的值。
  • 在下一階段,需要取下球面測微計並將其放置在鏡子上。學生應記下旋轉次數,標記為 n1。
  • 此外,在下一步中,使用垂直刻度讀取刻度上的值至關重要 (Bergman,2018)。學生需要重複此過程以獲得適當的觀察結果,直到旋轉完成。
序號 圓形(圓盤)刻度讀數 平面鏡上完全旋轉的次數 (n1) 不完全旋轉中圓盤刻度分度的數量 x = (a-B) 總讀數 h=n1xp+x(L.C) (mn)
1 h1=
2 h2=
3 h3=
結論

本教程旨在藉助金屬三角形計算曲率半徑。球面測微計根據千分尺的原理來計算曲率半徑。使用球面測微計裝置計算曲率半徑的學生需要採取一些額外的預防措施,以避免不必要的誤差。凸面是最常用於計算曲率半徑的材料。學生需要採取預防措施,例如反覆沿同一方向移動螺釘,以避免任何錯誤或積壓。

常見問題

Q1. 曲率半徑的公式是什麼?

用於計算曲率半徑的常用方程是 y=f(x)。曲率半徑引數可以幫助測量向量的長度。

Q2. 在平面表面上,P 和 R 的意義是什麼?

“P”和“R”都用於藉助凸透鏡計算曲率半徑。在計算半徑的上下文中,P = 0 且 R = 無窮大。

Q3. 速度計的螺距是什麼意思?

速度計的螺距是直線螺紋之間的距離,其中螺釘以與旋轉軸相同的對齊方式設定。

更新於: 2023年8月18日

444 次檢視

開啟你的職業生涯

完成課程獲得認證

開始學習
廣告