設定儲存索引位置為對應值,並在NumPy中處理越界索引


要將儲存索引位置設定為對應值,請在Python NumPy中使用**ma.MaskedArray.put()**方法。為indices中的每個n設定self._data.flat[n] = values[n]。如果values比indices短,則會重複。如果values包含一些掩碼值,則初始掩碼會相應更新,否則相應的數值將被取消掩碼。

索引是目標索引,解釋為整數。mode指定越界索引的行為方式。“raise”:引發錯誤。“wrap”:迴圈。“clip”:剪下到範圍。

步驟

首先,匯入所需的庫:

import numpy as np
import numpy.ma as ma

使用numpy.array()方法建立一個包含int元素的陣列:

arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]])
print("Array...
", arr) print("
Array type...
", arr.dtype)

獲取陣列的維度:

print("Array Dimensions...
",arr.ndim)

建立一個掩碼陣列,並將其中一些標記為無效:

maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]])
print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype)

獲取掩碼陣列的維度:

print("
Our Masked Array Dimensions...
",maskArr.ndim)

獲取掩碼陣列的形狀:

print("
Our Masked Array Shape...
",maskArr.shape)

獲取掩碼陣列的元素個數:

print("
Elements in the Masked Array...
",maskArr.size)

要將儲存索引位置設定為對應值,請在NumPy中使用ma.MaskedArray.put()方法。“mode”引數指定越界索引的行為方式。值為“raise”:引發錯誤。“wrap”:迴圈。“clip”:剪下到範圍。我們在這裡設定了一個越界索引,即32。“wrap”引數將迴圈:

maskArr.put([1, 5, 6, 9, 32],[99, 88, 33, 55, 66], mode = 'wrap')
print("
Result...
",maskArr)

示例

import numpy as np
import numpy.ma as ma

# Create an array with int elements using the numpy.array() method
arr = np.array([[55, 85, 59, 77], [67, 33, 39, 57], [29, 88, 51, 37], [56, 45, 99, 85]])
print("Array...
", arr) print("
Array type...
", arr.dtype) # Get the dimensions of the Array print("
Array Dimensions...
",arr.ndim) # Create a masked array and mask some of them as invalid maskArr = ma.masked_array(arr, mask =[[1, 1, 0, 0], [ 0, 0, 1, 0], [0, 0, 0, 1], [0, 1, 0, 0]]) print("
Our Masked Array
", maskArr) print("
Our Masked Array type...
", maskArr.dtype) # Get the dimensions of the Masked Array print("
Our Masked Array Dimensions...
",maskArr.ndim) # Get the shape of the Masked Array print("
Our Masked Array Shape...
",maskArr.shape) # Get the number of elements of the Masked Array print("
Elements in the Masked Array...
",maskArr.size) # To set storage-indexed locations to corresponding values, use the ma.MaskedArray.put() method in Numpy # The "mode" parameter is specify how out-of-bounds indices will behave. # The value ‘raise’ : raise an error. ‘wrap’ : wrap around. ‘clip’ : clip to the range. # We have set an out-of-bounds indice here i.e. 32 # The "wrap" parameter will wrap around maskArr.put([1, 5, 6, 9, 32],[99, 88, 33, 55, 66], mode = 'wrap') print("
Result...
",maskArr)

輸出

Array...
[[55 85 59 77]
[67 33 39 57]
[29 88 51 37]
[56 45 99 85]]

Array type...
int64

Array Dimensions...
2

Our Masked Array
[[-- -- 59 77]
[67 33 -- 57]
[29 88 51 --]
[56 -- 99 85]]

Our Masked Array type...
int64

Our Masked Array Dimensions...
2

Our Masked Array Shape...
(4, 4)

Elements in the Masked Array...
16

Result...
[[66 99 59 77]
[67 88 33 57]
[29 55 51 --]
[56 -- 99 85]]

更新於:2022年2月5日

147 次瀏覽

啟動你的職業生涯

完成課程獲得認證

開始學習
廣告