Python - 從 DataFrame 中刪除缺失(NaN)值


要移除缺失值(即 NaN 值),請使用 dropna() 方法。首先,讓我們匯入必要的庫 −

import pandas as pd

讀取 CSV 並建立一個 DataFrame −

dataFrame = pd.read_csv("C:\Users\amit_\Desktop\CarRecords.csv")

使用 dropna() 刪除缺失值。在使用 dropna() 後,NaN 將顯示為缺失值 −

dataFrame.dropna()

示例

以下是完整程式碼

import pandas as pd

# reading csv file
dataFrame = pd.read_csv("C:\Users\amit_\Desktop\CarRecords.csv")
print("DataFrame with some NaN (missing) values...\n",dataFrame)

# count the rows and columns in a DataFrame
print("\nNumber of rows and column in our DataFrame = ",dataFrame.shape)

# drop the missing values
print("\nDataFrame after removing NaN values...\n",dataFrame.dropna())

輸出

它將顯示以下輸出 −

DataFrame with some NaN (missing) values...
          Car        Place   UnitsSold
0        Audi    Bangalore        80.0
1     Porsche       Mumbai         NaN
2  RollsRoyce         Pune       100.0
3         BMW        Delhi         NaN
4     Mercedes   Hyderabad        80.0
5  Lamborghini  Chandigarh        80.0
6         Audi      Mumbai         NaN
7     Mercedes        Pune       120.0
8  Lamborghini       Delhi       100.0

Number of rows and colums in our DataFrame = (9, 3)

DataFrame after removing NaN values ...
           Car       Place   UnitsSold
0         Audi   Bangalore        80.0
2   RollsRoyce        Pune       100.0
4     Mercedes   Hyderabad        80.0
5  Lamborghini  Chandigarh        80.0
7     Mercedes        Pune       120.0
8  Lamborghini       Delhi       100.0

更新時間:2021-09-27

2K+ 瀏覽量

開啟你的 職業之旅

透過完成課程獲得認證

開始
廣告