合併具有一個公共列的 Python Pandas 資料框併為不匹配的值設定 NaN
若要合併具有公共列的兩個 Pandas DataFrame,請使用 merge() 函式,並將 ON 引數設定為列名稱。若要將不匹配的值設為 NaN,請使用“how”引數並將其設定為 left 或 right。這意味著合併左或右。
首先,我們用別名匯入 pandas 庫 −
import pandas as pd
讓我們建立 DataFrame1 −
dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, 110, 90] } )
讓我們建立 DataFrame2 −
dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'], "Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } )
現在,用公共列 Car 合併 DataFrame。左引號“顯示左 DataFrame 的所有值,並將第 2 個 DataFrame 中不匹配的值設為 NaN −
mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="left")
示例
程式碼如下 −
import pandas as pd # Create DataFrame1 dataFrame1 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Audi', 'Mustang', 'Bentley', 'Jaguar'], "Units": [100, 150, 110, 80, 110, 90] } ) print"DataFrame1 ...\n",dataFrame1 # Create DataFrame2 dataFrame2 = pd.DataFrame( { "Car": ['BMW', 'Lexus', 'Tesla', 'Mustang', 'Mercedes', 'Jaguar'], "Reg_Price": [7000, 1500, 5000, 8000, 9000, 6000] } ) print"\nDataFrame2 ...\n",dataFrame2 # merge DataFrames with common column Car and "left" sets NaN for unmatched values from second DataFrame mergedRes = pd.merge(dataFrame1, dataFrame2, on ='Car', how ="left") print"\nMerged data frame with common column...\n", mergedRes
輸出
程式碼如下 −
DataFrame1 ... Car Units 0 BMW 100 1 Lexus 150 2 Audi 110 3 Mustang 80 4 Bentley 110 5 Jaguar 90 DataFrame2 ... Car Reg_Price 0 BMW 7000 1 Lexus 1500 2 Tesla 5000 3 Mustang 8000 4 Mercedes 9000 5 Jaguar 6000 Merged data frame with common column... Car Units Reg_Price 0 BMW 100 7000.0 1 Lexus 150 1500.0 2 Audi 110 NaN 3 Mustang 80 8000.0 4 Bentley 110 NaN 5 Jaguar 90 6000.0
廣告